PHASE II GEO-ENVIRONMENTAL ASSESSMENT REPORT

Argoed High School

November 2020

CIVIL | STRUCTURAL | GEOTECHNICAL & ENVIRONMENTAL | TRAFFIC AND TRANSPORT

Lawrence House | 6 Meadowbank Way | Nottingham | NG16 3SB 01773 535555 | design@hspconsulting.com | www.hspconsulting.com

Argoed High School, Bryn Road, Mold,

Phase II Geo-Environmental Assessment Report

This report was produced by HSP Consulting Engineers Ltd for Gleeds Management Services Limited on behalf of the Department for Education (DfE) as the Phase II Geo-environmental Assessment Report for the Argoed High School to identify possible areas of contamination and provide an assessment of potential ground related development constraints to inform feasibility.

This report may not be used by any person other than Gleeds Management Services Limited on behalf of the DfE and must not be relied upon by any other party without the explicit written permission of HSP Consulting Engineers Ltd. In any event, HSP Consulting Engineers Ltd accepts no liability for any costs, liabilities or losses arising as a result of the use or reliance upon the contents of this report by any person other than Gleeds Management Services Limited on behalf of the DfE.

All parties to this report do not intend any of the terms of the Contracts (Rights of Third Party Act 1999) to apply to this report. Please note that this report does not purport to provide definitive legal advice.

Issue & Revision History

Revision	Status	Originated	Checked	Approved	Date
A	FINAL	H. Daley MGeol (Hons) FGS	J. P Bridgman BSc (Hons), CGeol, FGS	H.Pratt B.Eng (Hons), C.Eng, F.Cons.E, M.I.C.E, MI Mgt.	11.11.2020
-	FINAL	H. Daley MGeol (Hons) FGS	J. P Bridgman BSc (Hons), CGeol, FGS	H.Pratt B.Eng (Hons), C.Eng, F.Cons.E, M.I.C.E, MI Mgt.	10.09.2020
Project Num	ber: C3250	•	Document Reference: C3250/PII		

This document is available in hard copy, please contact the author to obtain a copy.

HSP Consulting Engineers Ltd, Lawrence House, 6 Meadowbank Way, Nottingham, NG16 3SB T 01773 535 555 W www.hspconsulting.com

Contents

1.		Introduction	1
	1.1	Background	1
	1.2	Client Brief & Scope	1
	1.3	Report Objectives	1
	1.4	Limitations	1
	1.5	Previous Reports	1
2.		Review of Existing Information & Geoenvironmental Setting	2
	2.1	The Site	2
	2.2	Geology	3
	2.3	Pertinent Site Sensitivity Information	3
3.		Fieldwork & Factual Information	5
	3.1	Exploratory Methods	5
	3.2	In-situ Testing	5
	3.3	Laboratory Testing	5
	3.4	Ground Conditions	7
	3.5	Groundwater Levels	7
	3.6	Ground Gas Monitoring	8
	3.7	Visual and Olfactory Evidence of Contamination	8
4.		Geotechnical Assessment	9
	4.1	Detailed Ground Model	9
	4.2	Earthworks1	11
	4.3	Excavations1	12
	4.4	Foundations1	12
	4.5	Ground Floor Slab1	3
	4.6	Concrete Classification1	3
	4.7	Pavement Design1	4
	4.8	Coal Mining Constraints1	4
5.		Environmental Assessment1	6
	5.1	Introduction1	6
	5.2	Assessment of Soil Analysis Results1	6
	5.3	Assessment of Topsoil Analysis Results1	17
	5.4	Human Health Mitigation1	17
	5.5	Water Supply1	8

5.	Ground Gas Risk Assessment	.18
5.	7 Waste Classification	.19
5.	3 Conceptual Site Model	.19
6.	References	.21

Appendices

Appendix I	-	Site Location Plan
Appendix II	-	Preferred Feasibility Option
Appendix III	-	Exploratory Borehole Logs
Appendix IV	-	Ground Investigation Layout Plan
Appendix V	-	Chemical Analysis Results
Appendix VI	-	Geotechnical Testing Results
Appendix VII	-	HazWasteOnline [™] Waste Classification Results
Appendix VIII	-	Ground Gas Monitoring Results
Appendix IX	-	Coal Seam Outcrop Precautions Guidance

Executive Summary

HSP Consulting has been commissioned by Gleeds Management Services Limited to undertake an intrusive ground investigation at the site to investigate the existing ground conditions and provide information on likely constraints to the development, preliminary parameters for design and recommendations for any mitigation measures should they be required to inform a feasibility study.

The site supports Argoed High School which is located off Bryn Road, Mold. The approximate National Grid Reference for the centre of the site is (NGR) 326380 364562.

The ground investigation comprised 12No window sample boreholes to a maximum depth of 5.00m and 4No. trial pits to a maximum depth of 2.20m begl. Made Ground was encountered across the site to a maximum depth of 5.00m begl. Superficial Till deposits were encountered underlying the Made Ground across the site and comprised firm to very stiff sandy slightly gravelly CLAY. Bedrock of the Pennine Lower Coal Measures Formation was encountered underlying the Made Ground and Till deposits. The deposits generally comprised firm to very stiff very sandy slightly gravelly CLAY underlain by extremely weak MUDSTONE. In addition, black friable dull saturated COAL was encountered between 1.70 - 1.90m begl within one exploratory hole location.

Assuming no significant level changes, the natural deposits are considered to be a suitable formation layer where they are encountered in a firm condition. Foundations within fine soils should be a minimum of 0.90m in depth, traditional strip or pad footings are considered appropriate and an allowable bearing pressure of 120kN/m² should be readily achievable. Should significant cut and fill be required and therefore significant changes in level across proposed building footprints, then an alternative foundation solution may be necessary.

It is considered that the natural fine soils at shallow depth may be suitable for use as engineered fill without modification. However, it should be noted that some moisture contents derived from the geotechnical testing are outside the range of OMCs and therefore modification of some material may be required. Further materials testing and an earthworks appraisal is recommended for design.

The concentrations of potential contaminants recorded at the site are below the relevant GACs and mitigation measures will not be required.

Ground gas concentrations have been monitored on six occasions in order to obtain an indication of the ground gas regime at the site. Comparison of the steady state gas screening value with Table 2 of BS8485:2015 + A1:2019 indicates the site falls in a Characteristic Situation 1 and therefore no ground gas protection measures are required, subject to Environmental Health Officer approval.

The executive summary contains an overview of key findings and conclusions. However, no reliance should be placed on the executive summary until the whole of the report has been read. Other sections of the report may contain information which puts into context the findings noted within the executive summary.

1. Introduction

1.1 Background

Detailed designs have not been provided for the site; however a preferred feasibility option has been provided indicating a new school building upon the playing fields immediately to the east of the existing school.

1.2 Client Brief & Scope

HSP Consulting has been commissioned by Gleeds Management Services Limited on behalf of the DfE to undertake an intrusive ground investigation at the site to investigate the existing ground conditions and provide information on likely constraints to the development, preliminary parameters for design and recommendations for any mitigation measures should they be required.

The report presents the following information:

- details of the ground investigation undertaken and the ground conditions encountered,
- details and results of the geotechnical testing and contamination analysis,
- recommendations for mitigating constraints to the proposed development where appropriate and providing parameters for foundation design.

Where applicable, the fieldwork was undertaken in accordance with BS5930:2015 Code of Practice for Site Investigations and BS10175:2011+A1:2013 Investigation of Potentially Contaminated Sites.

1.3 Report Objectives

The objectives of this report are to:

- establish the geological and hydrogeological conditions using existing available/published information;
- summarise available information and identify site specific geotechnical and environmental hazards which may place a constraint upon the proposed site use;
- produce an updated Conceptual Site Model identifying potential pollution linkages between sources of contamination, pathways and receptors.

1.4 Limitations

The recommendations made in this report are based on the findings of the intrusive ground investigation undertaken by HSP Consulting Ltd between the 25th June and 3rd August 2020.

1.5 Previous Reports

HSP Consulting have completed a Phase I Geo-environmental Desk Study Report for the site, details of which can be found below:

• HSP Consulting Engineers Limited, Phase 1 Geo-environmental Assessment, 'Argoed High School'. June 2020, Ref: C3250/PI.

2. Review of Existing Information & Geoenvironmental Setting

2.1 The Site

2.1.1 Location

The Argoed High School site is located off Bryn Road, Mold, CH7 6RY. The approximate National Grid Reference for the centre of the site is (NGR) 326380 364562. A Site Location Plan is included in Appendix I.

2.1.2 Description

The site comprises the existing Argoed High School. Bryn Road, immediately north of the site slopes downhill from west to east with the main drop off / parking area to the east of the school entrance. A large landscaping bund is evident immediately behind the drop off area and to the east of the gates.

The existing school is on two levels with the west of the school at a higher level and the east lower. The existing two storey school appears to be late 70's early 1980's construction, concrete and blockwork with much of the school having flat roofing.

Moving around the east of the site towards the proposed development site for the new school (existing playing fields) there are some large boundary trees not evident on the outline proposed plans. The access moves around the east of the buildings to a tarmac playground bordered by a small landscape bund with two portakabins.

The playing fields slope towards the eastern boundary where a stream runs down the southern boundary to the east and then northerly at the periphery. Boundary trees are mainly deciduous and predominantly found around the bottom eastern half of the field.

2.1.3 Surrounding Land Use

The main features of interest identified are:

- North: Residential area and highways (Bryn Road).
- East: Agricultural Fields (grass).
- South: Residential area and sports fields.
- West: Residential area and highways (Snowdon Avenue).

2.1.4 Site Access

The site is accessed through the existing school gates off Bryn Road.

2.1.5 Proposed End Use

The proposed end use will be a new build High School on the existing campus playing fields immediately to the east of the existing school buildings. The preferred option indicates a new build school with associated hard and soft landscaping, and additional multi use all weather play areas. Some areas of the existing site are due to remain such as the southern MUGA. The layout changes include demolition of the existing school, extensive hard and soft

landscaping as well as new vehicle drop off and parking provision. The preferred option layout is presented in Appendix II.

2.2 Geology

2.2.1 Made Ground

The BGS mapping does not indicate any Made Ground on the site, however, limited localised made ground should be anticipated associated with development of terraces for the existing school buildings and level play areas, observed during the desk study walkoever.

2.2.2 Superficial Deposits

Superficial Till deposits of Devensian age are recorded across the site.

2.2.3 Bedrock Geology

Bedrock Geology of the Pennine Lower Coal Measures Formation of the Carboniferous Period is recorded across the site and described by the BGS as '*Interbedded grey mudstone, siltstone and pale grey sandstone, commonly with mudstones containing marine fossils in the lower part, and more numerous and thicker coal seams in the upper part.*'

2.3 Pertinent Site Sensitivity Information

Based on the information collated for the desk study, the geo-environmental setting of the site is summarised as follows:

- The site is shown as an open field from the earliest mapping, with no significant changes until the 1980s when Argoed High School is recorded on site. No significant changes are recorded on subsequent mapping. The surrounding land within 250m is predominantly recorded as open fields with residential housing expansion to the west of the site from the 1970's. No significant changes are recorded on subsequent mapping.
- Superficial Till deposits are recorded across the site on relevant BGS mapping, underlain by bedrock geology of the Pennine Lower Coal Measures Formation.
- Made Ground is not indicated within the site boundary on the published geological mapping, however, limited localised made ground should be anticipated associated with development of the school.
- The superficial Till deposits are classified as a Secondary Undifferentiated Aquifer and the Pennine Lower Coal Measures Formation bedrock deposits are classified as a Secondary A Aquifer.
- The radon probability changes across the site, Basic radon protection measures are required in the north west corner of the site (intermediate probability radon area where 5% - 10% of properties are above the action level). Radon protective measures are not required elsewhere on site at present.
- The site does lie within a Coal Authority standing advice or reporting area. There are three mine shafts within the site boundary. The site in general is not within a High Risk Development Area. However, a Coal Mining Risk Assessment (CMRA) may be

required to support a planning application if there is interaction between the proposed layout and the known shafts.

Based on the above, the environmental sensitivity of the site can be considered to be Low at this stage.

3. Fieldwork & Factual Information

Site work was carried out on the 25th June and 3rd August 2020. Where applicable, the fieldwork was undertaken in accordance with BS5930:2015 Code of Practice for Site Investigations (Ref. 5) and BS10175:2011+A1:2013 Investigation of Potentially Contaminated Sites (Ref. 7).

Given the geology underlying the site and potential for encountering coal seams, in particular within the east of the site, a permit was obtained by the Coal Authority prior to undertaking the exploratory holes where coal may have been encountered.

The exploratory holes were positioned by HSP Consulting Engineers Limited to provide general coverage of the site and provide information for foundation design and obtain representative soil samples for geotechnical and geo-environmental analysis.

3.1 Exploratory Methods

The exploratory methods are detailed in the table below.

Туре	Quantity	Maximum Depth (m)	Details
Windowless Sampling Borehole	12	5.00	WS01 to WS12
Mechanically Excavated Trial Pits	4	2.20	TP101 - 104

The exploratory holes were logged and sampled by an Engineer from HSP Consulting Ltd and the logs are presented in Appendix III. The exploratory hole locations are shown on the Ground Investigation Layout Plan presented in Appendix IV.

Fragmentary bulk, disturbed and undisturbed samples were recovered from materials revealed within all the exploratory holes. Geo-environmental samples, placed in plastic tubs and glass jars supplied by the laboratory, were also obtained specifically for chemical analysis. The samples were taken to UKAS accredited laboratories for further examination and testing.

3.2 In-situ Testing

3.2.1 Standard Penetration Tests

Standard Penetration Tests (SPTs) were carried out at 1.00m intervals in the boreholes to 5.00m depth. The SPTs were undertaken in accordance with BS 1377:1990 and the results are included on the appended borehole logs (Appendix II).

3.2.2 Mexecone Probe Tests

Mexecone Probe Tests were positioned across the areas of the proposed MUGA Pitches to obtain an indication of the likely California Bearing Ratio within these areas. The results are included within Appendix VIII.

3.3 Laboratory Testing

The laboratory testing schedules were prepared by HSP Consulting Ltd.

3.3.1 Geotechnical Testing

Geotechnical testing has been scheduled to be undertaken by a UKAS accredited laboratory as part of the works at the site:

- Particle Size Distributions
- Optimum Moisture Contents
- Natural Moisture Contents
- Atterburg Limits
- Recompacted California Bearing Ratios
- One Dimensional Consolidations
- Moisture Condition Values

The laboratory testing has been carried out by Professional Soil Laboratory (PSL) (UKAS accredited, laboratory No.4043), in accordance with BS1377:1990 using calibrated equipment specifically for the British Standard.

3.3.2 Chemical Analysis

The geo-environmental samples retained specifically for chemical analysis were stored in cooled containers until delivery to the laboratory by courier.

Chemical analysis was scheduled on fourteen soil samples for the presence of a selected suite of potential contaminants as outlined in the tables below:

Exploratory Hole Location & Depth	Sample Description		
WS01 0.20m	Made Ground ^{1,3}		
WS02 1.00m	Made Ground ^{1,2}		
WS02 2.30m	Made Ground ³		
WS02 4.60m	Made Ground ^{1,3,4}		
WS04 1.00m	CLAY ²		
WS05 0.60m	Made Ground ²		
WS06 0.30m	Made Ground ^{1,3,4}		
WS06 1.70m	CLAY ^{1,2}		
WS07 0.10m	Made Ground ^{1,4}		
WS08 0.35m	Made Ground ^{1,3,4}		
WS09 1.50m	CLAY ²		
WS10 0.10m	Made Ground ^{1,3,4,5}		
WS11 2.50m	CLAY ²		
WS12 1.00m	CLAY ²		

Table 1 – Chemical samples and testing suites

¹ HSP Standard Suite, ² BRE Short Suite, ³ Asbestos Screen, ⁴ Organic Matter, ⁵ BS3882 Topsoil.

Metals	Cadmium	Chromium (III & VI)	Copper
	Lead	Mercury	Nickel
	Zinc		
Semi Metals and Non-metals	Arsenic	Boron	Selenium
Others	рН	Asbestos	
Inorganic Chemicals	Cyanide	Sulphate	Sulphide
Organic Chemicals	PAH (US EPA 16)	TPH (CWG)	Phenol

The contamination analysis was carried out by Chemtest Environmental Ltd (UKAS accredited, laboratory No. 2183) during the period 1^{st} July – 12^{th} August 2020. The results are presented in Appendix V.

3.4 Ground Conditions

3.4.1 Published Geology

The published geology indicates the site is underlain by superficial Till deposits and bedrock deposits of the Pennine Lower Coal Measures Formation as described in section 2.2.2 and 2.2.3 above.

3.4.2 Ground Conditions on site or General Geology & Revealed Strata

The exploratory hole data confirms the published information. The strata generally comprises:

Table	Table 2 – Encountered Ground Conditions							
	Strata	Depth (mbegl)	Thickness (m)	Description				
	MADE GROUND	G.L. – 0.10	0.10m	MADE GROUND comprising grass overlying sandy clayey topsoil.				
	MADE GROUND	G.L. – 0.30	0.30m	MADE GROUND comprising sandy slightly gravelly clayey topsoil.				
Anthropogenic	MADE GROUND	G.L.– 1.10	1.00m	MADE GROUND comprising sandy slightly gravelly clay.				
Anthrop	MADE GROUND	0.10 – 5.00	1.85m	MADE GROUND comprising very sandy slightly gravelly clay.				
	MADE GROUND 1.90 – 2.10		0.20m	MADE GROUND comprising very sandy clay with organic odour.				
	MADE GROUND	0.70 – 0.80	0.10m	MADE GROUND comprising sand.				
Superficial	TILL	0.45 – 3.00	2.10m	Firm to very stiff sandy slightly gravelly CLAY.				
	PENNINE LOWER COAL MEASURES FORMATION	2.10 - 3.00	0.90m	Firm to very stiff very sandy slightly gravelly CLAY.				
Bedrock	PENNINE LOWER COAL MEASURES FORMATION	1.80 - 4.00	1.00m	Extremely weak MUDSTONE				
	PENNINE LOWER COAL MEASURES FORMATION	1.70 – 1.90	0.20m	Black friable dull saturated COAL.				

3.5 Groundwater Levels

Groundwater was encountered between 1.00 – 2.70m during the advancement of the window sample boreholes.

Groundwater was monitored on four occasions in conjunction with the ground gas monitoring. Groundwater was recorded between 0.00 - 2.34m begl during the monitoring visits.

The high groundwater levels may in part be due to ingress of meteoric water into the monitoring well rather than a true groundwater level. However, significant groundwater strikes were encountered on site, in particular where coal was intersected, where groundwater rose significantly, during the 20 minute observation period.

3.6 Ground Gas Monitoring

Sources of potential ground gas were identified within the Desk Study, prior to the ground investigation and therefore ground gas monitoring has been undertaken.

Gas monitoring installations were constructed within three of the window sample boreholes at the site. Each well has been constructed using 50mm diameter HDPE pipe with the top half a metre being plain and the remainder slotted. All of the borehole installations have a 6mm pea gravel surround to the slotted pipe with a bentonite seal above and a gas tap. The covers are cemented flush with ground level and are either a round or square lockable stopcock cover.

The results of the ground gas monitoring are discussed in Section 5.5 below.

3.7 Visual and Olfactory Evidence of Contamination

No visual and olfactory evidence of contamination was noted in the exploratory holes during the ground investigation.

4. Geotechnical Assessment

4.1 Detailed Ground Model

For the purpose of this foundation assessment the information gained from the window sample boreholes and trial pits has been included. The borehole logs are presented in Appendix II.

4.1.1 Made Ground

Made Ground comprising sandy clayey topsoil or sandy slightly gravelly clayey topsoil was encountered across the site from ground level to a maximum depth of 0.30m begl.

Underlying the topsoil is Made Ground comprising sandy slightly gravelly clay and very sandy slightly gravelly clay with subordinate sand and very sandy clay deposits.

The depth of Made Ground varies across the site to a maximum depth of 2.10m begl with the exception of WS02 which was undertaken on a raised landform in the north of the site and encountered 5.00m of Made Ground the base of which was not penetrated in this exploratory location.

4.1.2 Superficial Till Deposits

Superficial Till deposits were encountered underlying the Made Ground across the site. The deposits comprised firm to very stiff sandy slightly gravelly CLAY. The base of the superficial deposits was not penetrated within all exploratory holes.

4.1.3 Pennine Lower Coal Measures Formation

Bedrock deposits of the Pennine Lower Coal Measures Formation were encountered underlying the Made Ground and Superficial Till deposits. The deposits generally comprised firm to very stiff very sandy slightly gravelly CLAY underlain by extremely weak MUDSTONE. In addition, black friable dull saturated COAL was encountered between 1.70 - 1.90 within one exploratory hole location. The base of the formation was not encountered in any of the exploratory holes.

4.1.4 In-situ & Laboratory Testing

A series of Standard Penetration Tests (SPT's) undertaken within all boreholes have returned SPT 'N' values of 4 - 25 at 1.00m depth. The following table summarises the N values at depth across the site.

Table 3 – SPT N Values				
Depth (m)	Range of 'N' Values	Mean 'N' Value	Description	
1.00	4 - 25	15	Made Ground	
1.00	11 - 24	17	CLAY	
2.00	4	4	Made Ground	
2.00	13 – 50	33	CLAY/MUDSTONE	
3.00	11	11	Made Ground	
3.00	22 – 50	41	MUDSTONE/CLAY	

Table 3 – SPT N Values

Seven particle size distribution (P.S.D.) tests have been undertaken to confirm the visual description and engineering behaviour of the superficial and bedrock deposits.

Seven plasticity index and moisture content determinations have been undertaken in the laboratory on disturbed samples of the fine deposits to confirm the visual description and engineering behaviour of the soils.

Sample Ref:	Laboratory Material Descriptions	LL (%)	PL (%)	PI (%)	% passing 425µm	Mod PI (%)*	Soil Class	MC (%)	PL -4%
WS1 @ 1.50m	Brown mottled grey gravelly sandy CLAY.	40	20	20	80	16.0	CI	13	16
WS2 @ 3.00m	Brown mottled grey gravelly sandy CLAY.	36	18	18	85	15.3	CI	16	16
WS3 @ 2.90m	Grey sandy CLAY	43	20	23	100	23.0	CI	13	16
WS5 @ 1.00m	Brown slightly gravelly sandy CLAY	47	23	24	92	22.1	CI	19	19
WS09 @ 0.90m	Brown mottled grey slightly gravelly very sandy CLAY	31	16	15	93	22.1	CL	15	12
WS10 @ 0.60m	Brown slightly gravelly very sandy CLAY	35	18	17	97	16.5	CI	15	18
WS12 @ 1.50m	Brown slightly gravelly very sandy CLAY	33	17	16	95	15.2	CL	14	17

Table 4 – Determination	of Plasti	city Index	and Natural	Moisture	Content
	0111030	Sity much	anu Naturai	MUSICILE	Content

4.1.5 Assessment

Classification testing indicates the majority of the soils at the site broadly conform to a 2C Stony Cohesive Material classification in accordance with Series 600 of the 'Specification for Highways Works' with the remaining two of the seven particle size distribution tests aligning with a 2A/2B classification. The right-hand columns of Table 4 above show the Plastic Limit - 4% and the natural moisture content. Plastic Limit -4% is the 'Acceptable Upper Limit' for 2B Dry Cohesive Material. All results are either the same or below this value and therefore material which aligns with the 2A/2B particle size envelope is likely to conform to a 2B Dry Cohesive Material classification in accordance with Series 600 of the 'Specification for Highways Works'. The Plasticity Index results indicate compliance with the definition of soils of low to intermediate plasticity (CL - CI) after the classification system of BS5930: 2015. These soils are generally considered to be of low to medium Volume Change Potential in accordance with the National House Building Council (NHBC) Standards, Chapter 4.2: 2007.

Compaction tests to obtain maximum dry density and optimum moisture content relationships were undertaken on six representative samples using a 2.5kg and 4.5kg rammer. Optimum moisture contents of between 13 – 14% and maximum dry densities between 1.87mg/m³ and 1.91mg/m³ were recorded for tests using the 2.5kg rammer and Optimum moisture contents of between 8.6% and 11% and maximum dry densities between 1.97mg/m³ and 2.09mg/m³ were recorded for tests using the 4.5kg rammer. Of the 6No samples tested, three have optimum moisture content which are the same as the initial moisture contents. The remaining three have an initial moisture content 3% lower than the optimum moisture content (OMC). Although the above shows conformity between initial and optimum moisture contents, it should be noted that some moisture contents derived for other tests are outside the range of OMCs and therefore modification of some material may be required.

6No. recompacted CBRs using a 2.5kg hammer were undertaken on bulk samples from the mechanically excavated trial pits. The samples were tested at 'as received' moisture and the results range between 11.0% and 34.0%.

One dimensional consolidation tests were undertaken on six samples of clay resulting in m_v values between $0.101m^2/MN$ and $0.266m^2/MN$ which represent clays of medium compressibility. In addition, four moisture condition value tests have been undertaken, two were completed at "as received" moisture and two were completed at a range of moisture contents.

Finally, given the geology underlying the site and chemical results obtained as part of this investigation. Should modification be required, selection of appropriate binders needs to be considered given the possible risk of heave associated with sulphate bearing soils. It may be prudent to undertake addition chemical tests to determine the most appropriate binder once the earthworks strategy, including proposed cut and fill, has been determined.

The results of the geotechnical testing undertaken are presented in Appendix V.

4.2 Earthworks

The proposals show that a significant cut and fill operation will be required to form a development platform prior to construction of the proposed school buildings.

A detailed cut and fill strategy has not yet been undertaken for the site. However, given the current site topography, it is likely that some building footprints will likely be within areas of both cut and fill.

Based on the limited testing undertaken as part of this ground investigation for feasibility, it is considered that the natural fine soils at shallow depth may be suitable for use as engineered fill without modification. However, it should be noted that some moisture contents derived from the geotechnical testing are outside the range of OMCs and therefore modification of some material may be required. Further materials testing and an earthworks appraisal is recommended for design.

Should materials prove to be suitable, placement and compaction would need to be strictly controlled and supervised. Project programming should consider the 'earthworks window' (prevailing dry & warm climatic conditions) as the soil materials will be susceptible to softening during periods of wet weather and will be easily damaged by site traffic and deterioration at times of heavy rainfall.

Care should be taken to ensure that fill materials are consistent in any earthworks and there is apparent variability within the natural materials. Where obvious inconsistencies are apparent within excavated soil sources for engineered fill they should be deposited in such a way that all parts of the site receive roughly equal amounts of a given material, in roughly the same sequence, thus ensuring a uniform distribution of fill types over the whole fill thickness. The difficulties of managing this would be compounded if modification is not implemented with potential double handling and stockpiling of materials for drying, mixing, and placement. These activities could all also impact significantly upon any proposed construction programme.

The argillaceous rock and coal seams encountered from 1.70m begl are unlikely to suitable for use as engineered fill. In addition, significant groundwater strikes which subsequently rose were recorded when coal was encountered within the exploratory holes suggesting groundwater within the coal seams on site may be under artesian pressure. Given the above, the rock head profile and seam depths should be used as a constraint within any volumetric (cut & fill) modelling.

4.3 Excavations

Excavations to proposed formation levels for new foundations and infrastructure should be feasible using standard excavation plant and equipment. Random and potentially severe falls should be anticipated from the faces of near vertically sided unsupported excavations carried out at the site. Where personnel are required to enter near vertically sided excavations, it is considered that full support should be provided to the full depth of all excavations.

It is recommended that all support systems are continually assessed by fully trained or experienced personnel.

In addition, significant groundwater strikes which subsequently rose were encountered when COAL was identified within the exploratory holes suggesting groundwater within the coal seams on site may be under artesian pressure. It should be noted that groundwater levels may vary due to seasonal variations or other effects. Should shallow groundwater entries be encountered at the site within the superficial deposits during groundwork operations, traditional sump and pump dewatering should be sufficient if required. However, if groundwater strikes associated with the coal seams are encountered within excavations, then tradition sump and dump dewatering may not be sufficient.

4.4 Foundations

For the purpose of this foundation assessment the information gained from window sample boreholes WS6 – WS12, which are located within proximity to the proposed buildings, have

been utilised. The foundation assessment assumes no changes in level at the site and should be reviewed when development plans and levels are more certain. Any proposed cut and fill will likely determine the foundation solution and it may be prudent to allow for piling and a suspended ground floor slab within any cost appraisal for feasibility depending on the depth of cut and fill underlying proposed building footprints..

The natural fine deposits encountered are considered to be a suitable formation layer where they are encountered in a firm condition. Foundations within fine soils should be a minimum of 0.90m begl in depth. The table below shows the indicative allowable bearing pressure (ABP) that could be achieved using strip or pad foundations across the building footprint.

Table 6 – Allowable E	Table 6 – Allowable Bearing Capacity										
Depth (m)	SPT (N₁)₀₀ Value	Eurocode 7 Soil Strength Description	Consistency (BS5930) Description	Approximate ABP (k/Nm²) – 0.60m wide strip footing	Approximate ABP (kN/m²) – 2x2m pad footing						
1.00	14.8	Medium Strength	Firm	120	125						
2.00	14.8	Medium Strength	Firm	135	140						
3.00	26.4	High Strength	Stiff	235	250						

From the above table, it would be recommended that an ABP of 120kN/m² could be utilised for design across the site. Given the relatively shallow depth of the underlying argillaceous bedrock across the site, where possible all foundations should bear onto one soil type, to reduce the risk of hard spots and differential settlement. In this case the most appropriate founding strata is likely the shallow superficial Till deposits.

Mature and semi mature trees were identified within close proximity of the proposed school. The soils on site are of medium to high volume change potential. Foundations should be deepened and designed in accordance with NHBC Chapter 4.2 Building near trees (Ref. 10).

4.5 Ground Floor Slab

A ground bearing floor slab is considered appropriate for the proposed school building providing a sub-floor void is not require for heave protection or as a result of regarding the site levels. Reference should be made to NHBC Standards Chapter 4.2 for confirmation.

The ground gas regime for the site is Characteristic Situation 1 and therefore no ground gas protection measures including sub-floor void are required. However, this assessment is subject to approval by the Local Authority Environmental Health Officer and therefore floor slab design should be considered in conjunction with the environmental assessment below.

4.6 Concrete Classification

The results of sulphate and pH testing carried out on selected soil samples taken during this investigation have been compared with the recommendations outlined in BRE Special Digest 1, Part 1: 2005.

The guidelines given in BRE Special Digest 1 are based upon a site classification relating to its previous usage. It is considered appropriate to define this site as a 'brownfield site' location for the purposes of concrete classification.

On the basis of the above, it is considered appropriate to adopt a basic Design Sulphate Class of DS-3 together with and Aggressive Chemical Environment for Concrete (ACEC) of AC-3. However, this classification is based on a limited number of results with the majority of results exhibiting a lower Design Sulphate Class. It may therefore be prudent to undertake further testing once the layout is more certain due to the potential for disturbance of pyritic ground during enabling works.

4.7 **Pavement Design**

7No. insitu MEXE probe tests were conducted across the site. From this an indicative California Bearing Ratio (CBR) can be provided. The results can be found in Appendix IX.

Following guidance provided within 'Design Manual for Roads and Bridges Volume 7 Section 2 Chapter 2' the CBR value chosen for design should be the minimum measured value, not the average. Therefore, for the proposed development, a CBR value of 3% at 300mm begl, 4% at 450mm and 7% at 600mm begl should be assumed for design purposes. The CBR tests at 150mm begl were all within the topsoil and therefore have not been included within the test results.

It is recommended that further confirmatory California Bearing Ratio tests are undertaken at formation as required during the course of the development.

4.8 Coal Mining Constraints

The site does lie within a Coal Authority standing advice or reporting area. A Coal Authority Consultants Report for the site is presented within the HSP Phase I Report (Ref 1)

The report provides details of three mine shafts within the site boundary. None of the three records provide any treatment details.

The location of the shafts as well as any relevant potential zone of influence will need to be accurately overlaid onto the proposed development plans to determine if further assessment is required or precautions need to be considered during detailed design. The shaft coordinates are provided in the existing HSP Phase I report (Ref 1) and until further information is available the zone of influence around each shaft should be assumed to be the Coal Authority default of 20m.

The site in general is not within a High Risk Development Area. However a Coal Mining Risk Assessment (CMRA) may be required to support a planning application if there is interaction between the proposed layout, the known shafts/zone of influence and shallow coal recorded on the available BGS borehole logs.

In addition to the shafts located within the red line boundary. Multiple coal seams have been identified on historical logs as well as the exploratory holes completed as part of this investigation. These coal seams are encountered at shallow depth as well as potentially outcropping within the site boundary. Our general guidance note addressing some of the risks including combustion, sulphates and hard-spots plus guidance on mitigation is provided in Appendix IX.

5. Environmental Assessment

5.1 Introduction

The approach to the human health risk assessment reported here follows the principals given in CLR 11, i.e. application of the following assessment hierarchy:

- Tier 1 risk screening by establishment of potential pollutant linkages, i.e. the preliminary conceptual site model (PCSM), or
- Tier 2 generic quantitative assessment using generic assessment criteria (GACs) that represent 'acceptably low' risk, or
- Tier 3 quantitative risk assessment using site specific assessment criteria (SSACs) that represent 'unacceptable risk', or where generic assessment criteria are not available, or they are not applicable to the CSM.

The results of laboratory analysis have been screened against GACs including the Defra Category 4 Screening Levels (C4SL) and LQM and CIEH S4ULs for Human Health Risk Assessment (Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3180. All rights reserved). (Refs 9 and 10 respectively).

In the absence of a standard scenario for a school environment the standard exposure scenario of residential without home grown produce has been used to identify potential exposure pathways for human health receptors. Controlled water, flora and fauna and property receptors have also been included within the CSM. Our Tier 2 HHRAs for school sites are screened against the GACs representative of minimal risk for residential without home grown produce end use, we believe this to be appropriate based on the precautionary principle the CLR guidance advocates.

It should be noted that organic contamination (PAH, TPH and BTEX) have been screened against the GAC for 1% Soil Organic Matter (SOM).

The assessment of PAHs is undertaken using the surrogate marker approach; recommended by Health Protection Agency (2010) guidance, providing the PAH profile is sufficiently similar to the coal tars tested by Culp et al (1998). Where PAH profile is not sufficiently coal tar like the TEF method is adopted using the LQM and CIEH S4ULs. Prior to assessment a PAH profile is generated for all samples analysed for PAH using the LQM PAH Profiling Tool v1.3, the graphical output is presented in Appendix IV.

5.2 Assessment of Soil Analysis Results

Fourteen samples, as detailed in section 3.3.2, were scheduled for analysis from the development area. These provide a basis for characterising the soils to outline the potential impacts on human health and any environmental receptors from any contamination found.

The screening process for on-site human health receptors show that the GACs, representative of minimal risk for a residential without home grown produce setting were not exceeded.

In addition, five samples were screened for asbestos with no asbestos identified within any of the samples.

5.3 Assessment of Topsoil Analysis Results

One sample was scheduled for a full BS3882 Topsoil analysis suite. The results identified a non-compliance with the multi-purpose range for all samples, detailed in the table below.

Parameter	Multipurpose Range	Result
Mass Loss on Ignition	5 - 20mg/l	3.5
Extractable Phosphorus	16 - 140mg/l	2.1
Extractable Magnesium	51 - 600mg/l	1100

There are also non-compliances with two of the three (acidic and calcareous) specific purpose ranges. These parameters which are not compliant with the three ranges are detailed below. The results are compliant with the requirement of the Low Fertility ranges.

Specific Purpose Range	Non-compliant Parameters
Acidic	Mass Loss on Ignition, Soil pH value, extractable phosphorus, extractable magnesium.
Calcareous	Mass Loss on Ignition, Soil pH value, extractable phosphorus, extractable magnesium.

5.4 Human Health Mitigation

The concentrations of potential contaminants recorded at the site indicates an acceptably low risk and therefore mitigation measures are not required as part of the proposed development.

Should any obvious evidence of unexpected contamination be encountered during the redevelopment works it should be reported to HSP so that an inspection can be made and appropriate sampling and assessment work be carried out.

Appropriate health and safety precautions should be adopted during any excavation works to avoid exposure to potentially contaminated soils and dust. Consideration should be given to the HSE document HSG 66 'Protection of workers and the General Public during Redevelopment of Contaminated Land'.

The approval of the local Environmental Health Officer should be sought with respect to the soil contamination assessment and mitigation proposals.

5.5 Water Supply

The environmental testing for the site has been compared to the following document in order to assess the most appropriate pipe material that should be used upon the site for mains water supply:

'Guidance for the selection of water supply pipes to be used in Brownfield sites – UK Water Industry Research – Ref: 10/WM/03/21.'

The chemical results show no exceedances of PE and PVC pipe threshold values and therefore, it is considered that specialist materials are unlikely to be required for water supply pipes at the site. However, confirmation of supply pipes should be sought from utility providers.

5.6 Ground Gas Risk Assessment

At the time of writing no detailed layout plans have been provided. For the purpose of this assessment, the school is classified as Building Type B as outlined in Table 3 of BS8485:2015+ A1:2019 Code of Practice of the design of protective measures for methane and carbon dioxide ground gas for new buildings (Ref 15). This is a conservative assessment, subject to change once the building occupancy and maintenance controls are better defined.

Ground gas concentrations were initially monitored on four occasions in order to obtain an indication of the ground gas regime at the site. However, due to grounds maintenance, WS08 could not be located during two monitoring visits and therefore two additional visits were completed to reduce uncertainty and provide a robust dataset for assessment.

The results indicate that methane has not been recorded above the monitor's limit of detection (<0.1%vol). Carbon dioxide has been recorded at a maximum concentration of 3.4% vol in air in WS06.

One positive gas flow of 3.7I/hr was recorded within WS06 during one monitoring event. No other positive flow readings have been recorded during the monitoring visits including visits during period of lower atmospheric pressure. It is considered that this positive flow is the result of groundwater close to the top of the response zone causing a piston effect within the installation and not a true reading of gas flow.

The results have been assessed in line with the guidance provided in BS8485:2015 + A1:2019 Code of Practice of the design of protective measures for methane and carbon dioxide ground gas for new buildings (Ref 15) and CIRIA Document C665 'Assessing Risks Posed by Hazardous Ground Gases to Buildings' (Ref 16).

Comparison of the worst case steady state gas screening value with Table 8.5 of the CIRIA document indicates the site falls in a Characteristic Situation 2. However, based on the data set as a whole and groundwater levels, it would be inappropriate to base the assessment on the worst case flow readings.

Comparison of derived ground gas screening values excluding the erroneous flow result with Table 8.5 of the CIRIA document indicates the site falls in a Characteristic Situation 1 (CS1) and therefore no ground gas protection measures are required, subject to Environmental Health Officer approval.

5.7 Waste Classification

The results of the chemical testing have been assessed using web-based software for classifying hazardous waste, using HazWasteOnline[™]. The materials tested are likely to be classified as non-hazardous. The results are included in Appendix IV.

Please note the above classification provides an indication of how the material should be classified for removal off site; however this should be used at your approved waste handler's discretion and further testing may be required prior to any offsite disposal.

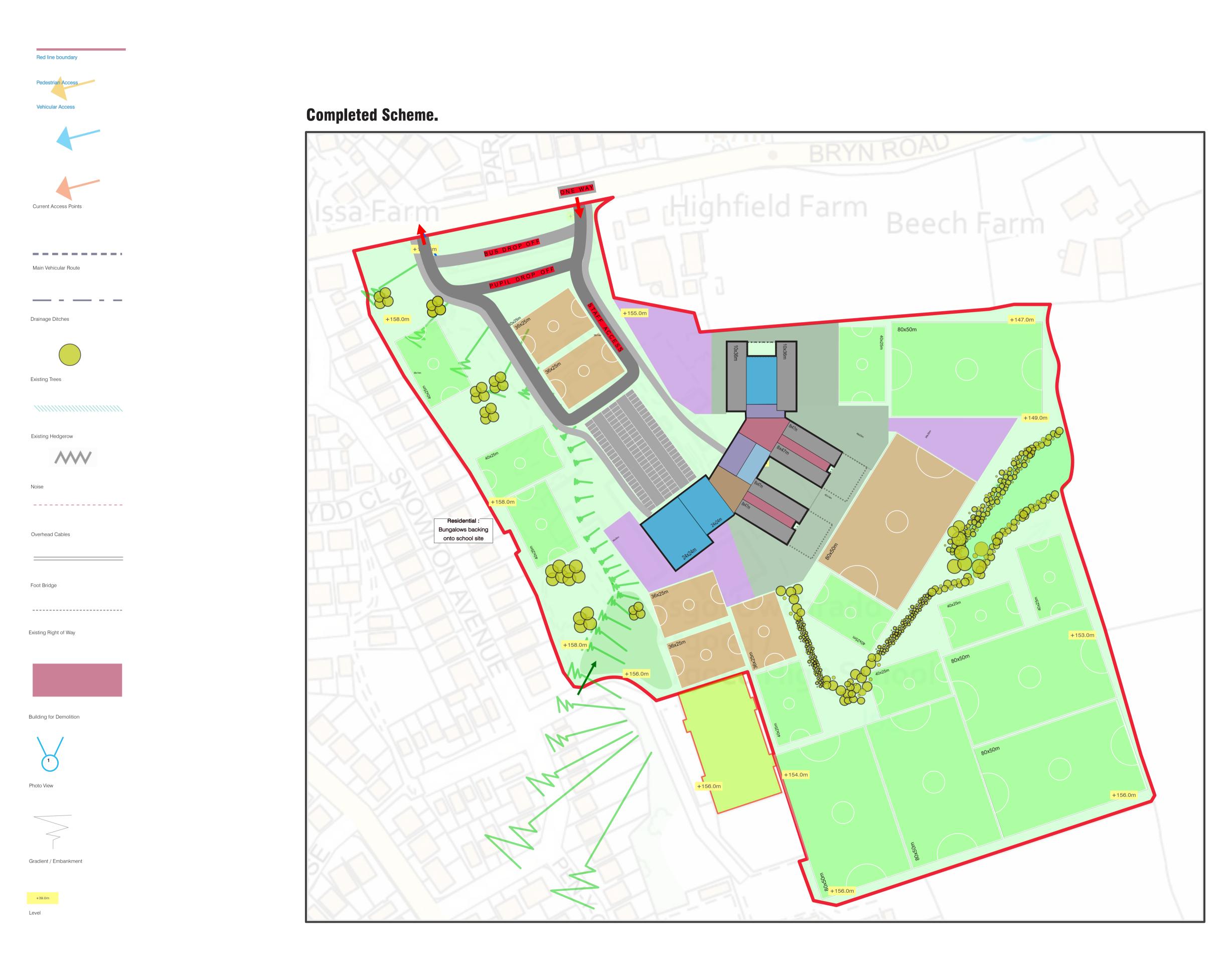
5.8 Conceptual Site Model

Based on the findings of this site investigation and Phase I Report, a conceptual site model has been produced and is presented in the table below.

Source	Pathway	Receptor	Consequence	Probability	Risk	Comments
On site S1: Historical and	P1: Human uptake pathways	R1: End Users R2: Construction and maintenance workers	Mild	Unlikely	Very Low	Concentrations of contaminants of concern are below the relevant GACs within the near surface deposits sampled across the site and therefore the risk is considered to be VERY LOW. Appropriate health and safety precautions should be adopted during any excavation works to avoid exposure to potentially contaminated soils and dust.
Contemporary land use: Agricultural Land, Education Facility.	 P2: Horizontal and vertical migration of contaminants through potentially permeable soils and rocks. P3: Migration of contaminants along preferential pathways (man- made). P4: Surface runoff. 	R3: Controlled Water: Groundwater & Surface Water	Mild	Unlikely	Very Low	Superficial and Bedrock geology is classified as Secondar (Undifferentiated) and Secondary A Aquifers respectively. No significant contamination was identified during the ground investigation across the site, therefore the risk to controlled water is considered to be VERY LOW.
Off Site (within 250m)	 P2: Horizontal and vertical migration of contaminants through potentially permeable soils and rocks. P3: Migration of contaminants along preferential pathways (man-made). P4: Surface runoff. P5: Vertical and lateral migration of ground gases and/or vapour. 	R1: End Users R2: Construction and maintenance workers	Minor	Unlikely	Very Low	Ground gas concentrations have been monitored on six occasions in order to obtain an indication of the ground gas regime at the site. The results indicate the site is characterised as CS1 and therefore no ground gas protection measures are required, subject to EHC approval. Given the above the residual risk is considered to be VERY LOW.
 S2: Historical and Contemporary land use: Agricultural land, residential dwellings, allotments. S3: Historical Ponds – Ground Gas Source 	 P2: Horizontal and vertical migration of contaminants through potentially permeable soils and rocks. P3: Migration of contaminants along preferential pathways (man-made). P4: Surface runoff. 	R4: Property, services and substructures R5: Adjacent Residential Properties	Mild	Low	Low	The natural soils may contain sulphates that present a risk to burier concrete. Testing indicates the soils are unlikely to be aggressive to concrete and it is considered appropriate to adopt a basic Desig Sulphate Class of DS-3 together with and Aggressive Chemica Environment for Concrete (ACEC) of AC-3. However, it ma therefore be prudent to undertake further testing once the layout i more certain. The chemical results show no exceedances of PE and PVC pip threshold values and therefore, it is considered of specialis materials are unlikely to be required for water supply pipes at the site. However, confirmation of supply pipes should be sought from utility providers.
	P6: Root uptake.	R6: Proposed Flora and fauna	Mild	Unlikely	Very Low	Extensive planting is unlikely therefore the risk of uptake the proposed flora and fauna is VERY LOW.

6. References

- 1. HSP Consulting Engineers Limited, Phase 1 Geo-environmental Assessment, 'Proposed Argoed High School'. June 2020, Ref: C3250/PI
- 2. BRITISH GEOLOGICAL SURVEY. 1999. Flint. England and Wales Sheet 108. Bedrock and Superficial Deposits. 1:50 000 (Keyworth, Nottingham: British geological Survey).
- 3. British Geological Survey Lexicon Search <u>http://www.bgs.ac.uk/lexicon/</u>
- 4. Department of the Environment Industry Profiles.
- 5. Site Investigation in Construction, Volume 3, Specification for Ground Investigation 2nd Edition.
- 6. BS 5930:2015 Code of Practice for Site Investigations.
- 7. BS 8576:2013 Guidance on investigations for ground gas. Permanent gases and Volatile Organic Compounds (VOCs)
- 8. BS10175:2011 +A1:2013 Investigation of Potentially Contaminated Sites Code of Practice.
- 9. NHBC Standards, Chapter 4.2, Building near trees.
- 10. Nathanail, C.P., McCaffrey, C., Gillett, A.G., Ogden, R.C. and Nathanail, J.F. 2015. The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, Nottingham.
- 11. Department for Environment, Food and Rural Affairs and Contaminated Land: Applications in Real Environments (CL:AIRE) (December 2013). SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination.
- 12. BRE Special Digest 1:Concrete in Aggressive Ground, 2005, Building Research Establishment.
- 13. CL:AIRE The definition of Waste: Development Industry Code of Practice, 2008.
- 14. NHBC & RSK Group Plc, March 2007. Guidance on evaluation of development proposals on sites where methane and carbon dioxide are present. Ed 4.
- 15. BS8485:2015 + A1:2019 Code of Practice of the design of protective measures for methane and carbon dioxide ground gas for new buildings
- 16. CIRIA C665 'Assessing Risks Posed by Hazardous Ground Gases to Buildings'
- 17. Department for Environment, Food and Rural Affairs and Contaminated Land: Applications in Real Environments (CL:AIRE) (December 2013). SP1010: Appendix E Provisional C4SLs for Benzo(a)pyrene as a surrogate marker for PAHs.
- 18. www.environment-agency.gov.uk
- 19. Environment Agency, Freshwater Environmental Quality Standards (EQS) contained in the Hydrogeological Risk Assessment for Landfills and the Derivation of Groundwater Control and Trigger Levels, 2015.
- 20. HMSO, Water Supply (Water Quality) Regulations, 2002


Appendix I

Appendix II

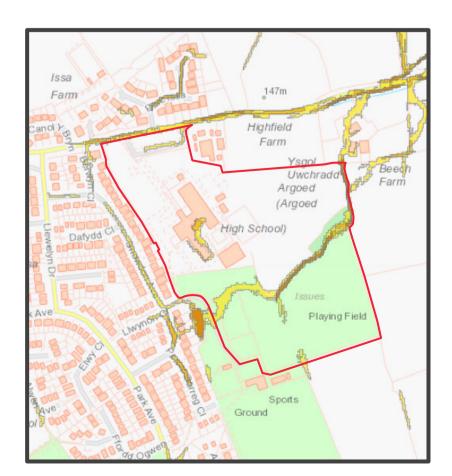
Argoed Primary School										
Sc	hool Spec	ifics:								
No. of pupils	600									
FTE staff	55									
Total Building Area / m2										
Generated from BB99	3,040	Test Scheme	Difference							
Childcare	0	0	0							
Basic Teaching	1450	1450	0							
Hall	351	351	0							
Learning resources	125	125	0							
Staff & Admin	182	182	0							
Storage	237	237	0							
Float	155	155	0							
Total	2,500	2,500	0							
BB99 E	xternal Sp	aces / m2								
Pitches	12,000	4000	-8,000							
Soft play	2,300	1865	-435							
Games courts	1,800	1800	0							
Hard play	1,300	1309	9							
Habitat	800	900	100							
Float	3,000	3000	0							
Total Net	21,200	12,874	-8,326							
	Parking									
No. of Spaces	55	55	0							
Min Other	2120									
Max Other	4340									
Childcare										
Min Total Gross	23,800									
Max Total Gross	26,500									

Argoed	Seconda	ry School	
Sel	nool Spec	ifics:	
No. of pupils	700		
FTE staff	65		
	Building A	rea / m2 Test	
Generated from BB98	3,040	Scheme	Difference
Childcare	0	0	0
Basic Teaching	2,150	2,150	
Hall	810	810	
Learning resources	250	250	
Staff & Admin	335	335	
Storage	420	420	
Float	460	460	
Dining & Social	165	165	
Total	4,590	4,590	
BB98 Ex	cternal Sp	aces / m2	
Pitches	34,500	25000	-9,500
Soft play	2,550	2300	-250
Games courts	2,000	6700	4,700
Hard play	1,450	1300	-150
Habitat	900	2689	1,789
Float	4,500	4500	(
Total Net	45,900	42489	-3,411
	Parking		
No. of Spaces	65	65	0
Min Other	1,000		
Max Other	11,400		
Childcare			
Min Total Gross	46,900		
Max Total Gross	57,300		

Points of Note.

- School areas shown are based on BB98 & BB99 Gross Floor areas.
- Adjacencies have yet to be resolved.
- Building components aligned north south where possible, with teaching spaces on the east and west elevations.
- Building located away from Bryn Road noise and pollution.
- Existing woodland retained and identified as Habitat Space.
- Existing games court retained. To be considered whether this sits outside of the MIM contract.
- External amenities games courts located towards the front of the site to facilitate access for community use and site management.

Site Access.


• Access off proposed new road. Position of turn-off TBC.

Phasing and Delivery.

No existing buildings on the site.Development wholly dependent on the delivery of the new road.

Utilities:

• Not currently known.

Appendix III

h	C	n							Borehole N	0.
	3	P				Bo	reho	ole Log	WS01	
	sult				Project No.				Sheet 1 of Hole Type	
Projec	t Name:	Argoed Hi	gh Sch	nool	C3250		Co-ords:	-	WS Scale	
Locatio	on:	Argoed Hi	gh Sch	nool			Level:		1:50	
Client:		Gleeds Ma	anager	ment Services Lin	nited		Dates:	25/06/2020 -	Logged By HD	y
Well	Water Strikes		1	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1	
	OUIKES	Depth (m) 0.20	Туре тј	Results	0.10			MADE GROUND - Grass overlying	brown sandy	-
		0.50	D	N=18 (4,4/4,4,5,5	0.50			 clayey topsoil. Sand is fine to coars MADE GROUND - Brown sandy slig clay. Sand is fine to coarse. Gravel lithologies and coal. Firm to stiff brown sandy slightly gra Sand is fine to coarse. Gravel is sub rounded of mixed lithologies and coarse. 	ghtly gravelly is mixed avelly CLAY. b-angular to	- - - 1 - -
		1.50	D							-
		2.00		50 (10,12/50 for 155mm)	1.90 2.00			Extremely weak light grey MUDSTC End of borehole at 2.00 m	<u>DNE</u>	2 —
										3
										7 8 9
Remar	ks								AGS	10 —

h	C								Borehole No	D.
	5	Р				Bo	reho	ole Log	WS02	
con	sult	ing			Project No.			•	Sheet 1 of 1 Hole Type	
Projec	t Name:	Argoed Hi	gh Sch		C3250		Co-ords:	-	WS	
Locati	on:	Argoed Hig	gh Sch	nool			Level:		Scale 1:50	
Client		Gleeds Ma	anager	nent Services Lirr	nited		Dates:	25/05/2020 -	Logged By HD	,
Well	Water Strikes	-	1	In Situ Testing	Depth	Level	Legend	Stratum Description	1	
	Surkes	Depth (m)	Туре	Results	(m) 0.10	(m)		MADE GROUND - Grass overlying topsoil. Sand is fine to coarse. Grav angular to rounded of mixed litholog MADE GROUND - Brown sandy sli clay. Sand is fine to coarse. Gravel angular to rounded of mixed litholog	vel is sub- gies ghtly gravelly is sub- gies.	
		1.00 1.50	В	N=4 (1,0/1,0,1,2)				MADE GROUND - Brown very sand gravelly clay. Sand is fine to coarse sub-angular to rounded of mixed lith	. Gravel is	-
		1.95 2.00 2.30 3.00 3.00	J TJ B	N=4 (1,1/1,1,1,1) N=11 (0,1/2,3,3,3				MADE GROUND - Dark blackish br sandy clay. Sand is fine to coarse w odour. MADE GROUND - Blackish brown slightly gravelly clay. Sand is fine to Gravel is sub-angular to sub-rounde lithologies, brick and coal.	vith organic very sandy coarse.	2
		4.00		N=14 (3,3/3,3,4,4	3.50			MADE GROUND - Brown very sand gravelly clay. Sand is fine to coarse sub-angular to rounded of mixed lith brick and concrete.	. Gravel is nologies,	4
		4.60 5.00	TJ	N=29 (3,4/4,5,8,12	2) 5.00			End of borehole at 5.00 m		5
										6 -
										7 -
										8 -
										9
									1	- 10 —
Rema	rks		1	I		1			AGS	

	6								Borehole N	lo.
	S	p				Bo	reho	ole Log	WS03	3
con	sult	ing					1	0	Sheet 1 of 1	
Project	Name:	Argoed Hi	gh Scl		Project No. C3250			-	Hole Type WS	
Locatio	n:	Argoed Hi	gh Scl	lool			Level:		Scale 1:50	
Client:		Gleeds Ma	anagei	ment Services Limi	ted		Dates:	25/05/2020 -	Logged B HD	8y
	Water	Sample	s and	In Situ Testing	Depth	Level	Legend	Stratum Descriptior	1	
	Strikes	Depth (m) 0.50 1.00 2.00 4.00	Туре	Results N=15 (3,3/4,3,4,4) N=13 (3,3/3,4,3,3) N=22 (6,5/5,4,6,7) 50 (25 for 95mm/50 for 135mm)	1.85 2.10 3.00	(m)		MADE GROUND - Grass overlying topsoil. Sand is fine to coarse. Grav angular to rounded of mixed litholog MADE GROUND - Blackish brown slightly gravelly clay. Sand is fine to Gravel is sub-angular to sub-rounde lithologies, brick and coal.	sandy clayey /el is sub- jies. // very sandy o coarse. ed of mixed // // gravelly el is sub- gies and coal. // ghtly gravelly el is angular	
										8 - - 9 -
Remark	ks								AGS	10 -

h	S sult	D				Во	reho	ole Log	Borehole No WS04 Sheet 1 of 1	
	t Name:		gh Sch		roject No. 3250		Co-ords:	-	Hole Type WS	
Locatio	on:	Argoed Hi	gh Sch		5250		Level:		Scale 1:50	
Client:		Gleeds Ma	anager	nent Services Limit	ed		Dates:	25/05/2020 -	Logged By	,
14/-11	Water			In Situ Testing	Depth	Level		Otrature Data sin titu	HD	
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
		0.05 1.00 1.00 2.00 2.00	TJ	N=14 (2,2/3,3,4,4) N=20 (4,3/4,5,6,5)	0.10			MADE GROUND - Grass overlying topsoil. Sand is fine to coarse. MADE GROUND - Blackish brown slightly gravelly clay. Sand is fine to Gravel is sub-angular to sub-rounde lithologies, brick and coal. Firm to very stiff brown sandy slight CLAY. Sand is fine to coarse. Grave to sub-rounded of mixed lithologies	very sandy coarse. ed of mixed ly gravelly el is angular	1
		3.00 3.00	В	N=40 (10,8/7,13,8,12)	3.00			End of borehole at 3.00 m		3
										5
										7
										9
Remai	rks								AGS	10 –

h	S	р				Bo	reho	ole Log	Borehole N	
con	sult	ing						bio Log	Sheet 1 of	
Projec	t Name:	Argoed Hi	gh Scł		Project No. 3250		Co-ords:	-	Hole Type WS	e
Locatio	on:	Argoed Hi	gh Scł				Level:		Scale 1:50	
Client:		Gleeds Ma	anadei	ment Services Limi	ted		Dates:	25/05/2020 -	Logged B	у
	Water			In Situ Testing	Depth	Level			HD	
Well	Strikes		Туре	1	(m)	(m)	Legend	Stratum Description		
		0.60 1.00 2.00 3.00 3.00	тJ В	N=11 (2,2/2,2,3,4) N=15 (5,3/3,4,4,4) 50 (25 for 85mm/50 for 5mm)	2.50			MADE GROUND - Grass overlying topsoil. Sand is fine to coarse. MADE GROUND - Blackish brown - slightly gravelly clay. Sand is fine to Gravel is sub-angular to sub-rounde lithologies, brick and coal. MADE GROUND - Red sand. Sand coarse. Firm brown sandy slightly gravelly 0 fine to coarse. Gravel is angular to of mixed lithologies and coal.	very sandy coarse. ed of mixed l is fine to CLAY. Sand is sub-rounded	
										8
Rema	rks								AGS	

h	S	р				Bo	reho	ole Log	Borehole No	
cons	ulti	ng						JIC LOG	Sheet 1 of 1	
Project N	Name:	Argoed Hig	gh Sch		Project No C3250).	Co-ords:	-	Hole Type WS	
Location	n:	Argoed Hig	gh Sch	nool			Level:		Scale 1:50	
Client:		Gleeds Ma	inager	nent Services Lin	nited		Dates:	03/08/2020 -	Logged By HEB	
	Vater trikes			In Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
	ILLIKES	Depth (m) 0.30 1.00 2.00	Туре ТЈ В	Results N=24 (4,4/4,6,7,7 50 (25 for 135mm/ for 125mm)	0.20 0.45 7)	(m)		MADE GROUND - Grass overlying sandy slightly gravelly clayey topso fine to coarse. Gravel is angular to i mixed lithologies and brick. MADE GROUND - Orangish brown slightly gravelly clay. Sand is fine to Gravel is sub-angular to rounded of lithologies and coal. Firm to stiff brown mottled grey san gravelly CLAY. Sand is fine to coars sub-angular to angular of mixed lith coal. Extremely weak yellowish brown MI End of borehole at 2.00 m	dark brown I. Sand is rounded of sandy coarse. mixed dy slightly e. Gravel is ologies and UDSTONE.	
									1	- - - - 10 —
Remarks	S								AGS	

								Borehole No.
n S					Bo	reho	ole Log	WS07
consul	ling			D 1 1 1		1		Sheet 1 of 1
Project Nam	ne: Argoed Hig	gh Scł	nool	Project No. C3250		Co-ords:	-	Hole Type WS
Location:	Argoed Hi	ah Sal				Level:		Scale
	Algoeu Hi	yn Sci	1001			Level.		1:50
Client:		-	ment Services Lin	nited		Dates:	03/08/2020 -	Logged By HEB
Well Wate Strike		s and Type	In Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	
	Depth (m) 0.10 1.00 1.90 2.00	T	N=20 (3,4/4,4,6,6	0.30 0.60 3) 1.70 1.90			MADE GROUND - Grass overlying sandy slightly gravelly clayey topsoi sub-rounded to angular of mixed lith MADE GROUND - Orangish brown gravelly clay. Sand is fine to coarse angular to rounded of mixed litholog Firm to stiff brown mottled grey sand gravelly CLAY. Sand is fine to coars sub-angular to angular of mixed lith coal. Black friable dull saturated COAL. Very stiff light grey sandy slightly gr Sand is fine to coarse. Gravel is ang rounded of mudstone. End of borehole at 2.00 m	il. Gravel is nologies. sandy . Gravel is gies and coal. dy slightly e. Gravel is ologies and avelly CLAY. 2 -
Remarks								AGS

h	S sult	D ing				Во	reho	ole Log	Borehole N WS08 Sheet 1 of	3
Projec	t Name:	Argoed Hi	gh Scł		Project No. 23250		Co-ords:	-	Hole Type WS	e
Locati	on:	Argoed Hi	gh Scł	iool			Level:		Scale 1:50	
Client:		Gleeds Ma	anager	nent Services Limi	ted		Dates:	03/08/2020 -	Logged B HEB	8y
Well	Water		1	In Situ Testing	Depth	Level	Legend	Stratum Description	1	
	Strikes	Depth (m) 0.35 1.00 2.00 2.80	тј	Results N=15 (3,3/3,4,4,4) (6,6/8,10,12,10) N=50 (13,10/50 for 295mm)	(m) 0.40	(m)		Stratum Description MADE GROUND - Grass overlying mottled grey sandy slightly gravelly fine to coarse. Gravel is angular to of mixed lithologies and concrete. Firm to very stiff brown mottled gre slightly gravelly CLAY. Sand is fine Gravel is sub-angular to angular of lithologies and coal.	brown clay. Sand is sub-rounded / y sandy to coarse. mixed	
Rema	rks									7 -
									AGS	5

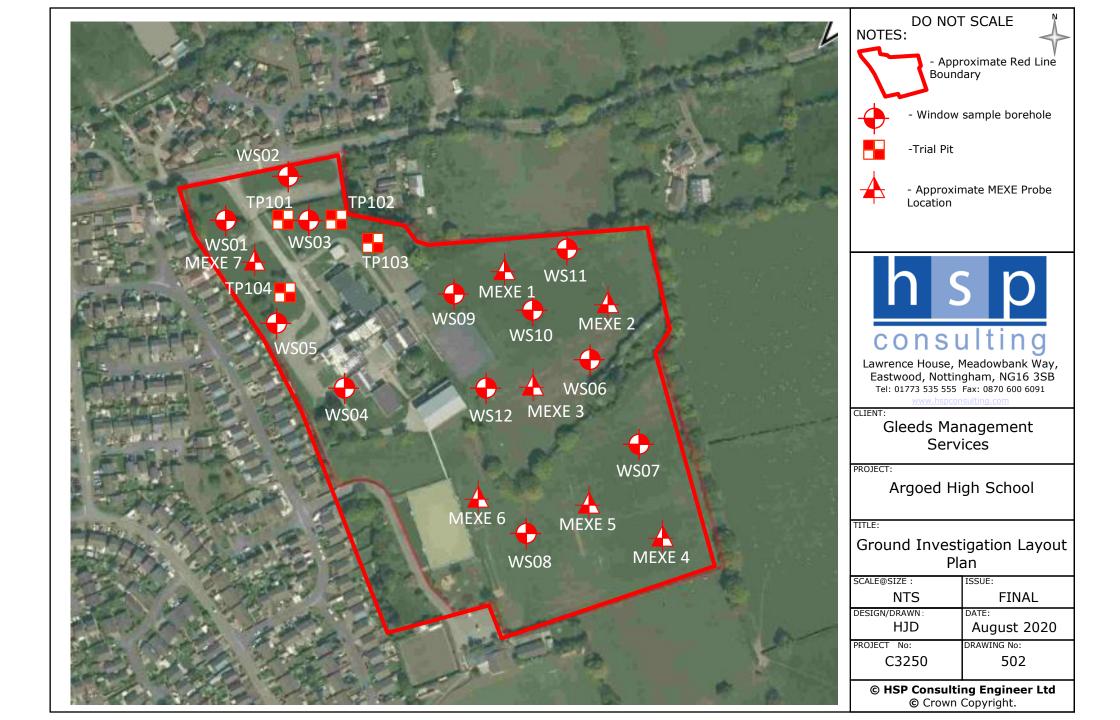
h con	S sult	D ing				Bo	reho	ole Log	Borehole N WS09 Sheet 1 of)
Projec	t Name:	Argoed Hi	gh Scł		roject No. 3250		Co-ords:	-	Hole Type WS	е
Locatio	on:	Argoed Hig	gh Scł	lool			Level:		Scale 1:50	
Client:		Gleeds Ma	anager	ment Services Limit	ed		Dates:	03/08/2020 -	Logged B HEB	By
Well	Water Strikes		1	In Situ Testing	Depth	Level	Legend	Stratum Descriptior	1	
		Depth (m) 0.90 1.00 2.00 3.00 3.50	Type D T	Results N=14 (2,2/3,3,4,4) N=15 (13,10/4,3,4,4) N=28 (9,7/7,7,7,7) 50 (25 for 5mm/50 for 5mm) 50 mm)	2.70	(m)		MADE GROUND - Grass overlying sandy slightly gravelly clayey topso fine to coarse. Gravel is angular to mixed lithologies and brick. Firm to stiff brown mottled grey san gravelly CLAY. Sand is fine to coars sub-angular to angular of mixed lith coal. Extremely weak light grey MUDSTO End of borehole at 3.50 m	il. Sand is rounded of / dy slightly se. Gravel is ologies and	
										10 -
Remar	ks			·			· · · · · ·		AGS	S

h	S	n						- -	Borehole N	
cop	sult	ing				RO	reno	ole Log	WS10	
	t Name:		ah Sak	P	roject No.		Co-ords:		Sheet 1 of Hole Type	
		•	-		3250			-	WS Scale	
Locati	on:	Argoed Hi	gh Sch	nool			Level:		1:50	
Client:		Gleeds Ma	anager	ment Services Limit	ed		Dates:	03/08/2020 -	Logged By HEB	у
Well	Water	-	1	In Situ Testing	Depth	Level	Legend	Stratum Descriptior	1	
	Strikes	Depth (m) 0.10 1.00 2.00 3.00	Type	Results N=25 (3,2/7,8,7,3) (6,7/10,10,10,10) 50 (25 for 65mm/50 for 20mm)	(m) 0.20 1.40 2.50 2.70 3.00	(m)		 MADE GROUND - Grass overlying sandy slightly gravelly clayey topso fine to coarse. Gravel is angular to mixed lithologies and brick. MADE GROUND - Brown mottled g gravelly clay. Sand is fine to coarse sub-angular to rounded of mixed lithologies, Firm to stiff brown sandy slightly grassand is fine to coarse. Gravel is surrounded of mixed lithologies, Firm to stiff light grey sandy slightly CLAY. Sand is fine to coarse. Gravel is all of borehole at 3.00 m Extremely weak light grey MUDSTC End of borehole at 3.00 m 	dark brown il. Sand is rounded of grey sandy c. Gravel is hologies and avelly CLAY. b-angular to	
Rema	rks								AGS	10 —

h	C	\mathbf{r}							Borehole N	No.
	5	Ρ				Bo	reho	ole Log	WS11	l
con	sult	ing			Project No.				Sheet 1 of Hole Type	
Projec	t Name:	Argoed Hi	gh Scł		C3250		Co-ords:	-	WS	e
Locatio	on:	Argoed Hi	gh Scł	lool			Level:		Scale 1:50	
Client:		Gleeds Ma	anager	ment Services Lim	iited		Dates:	03/08/2020 -	Logged B HEB	8y
Well	Water Strikes	Samples Depth (m)	s and	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1	
		0.50 1.00 2.00 2.50 3.00	ТЈ	N=18 (4,3/4,4,4,6 N=18 (3,3/3,4,6,5 N=50 (8,12/50 fo 295mm))			MADE GROUND - Grass overlying sandy slightly gravelly clayey topso fine to coarse. Gravel is angular to i mixed lithologies and brick. Firm to very stiff brown mottled grey sandy gravelly CLAY. Sand is fine to Gravel is sub-angular to rounded of lithologies. End of borehole at 3.00 m	il. Sand is rounded of / slightly o coarse.	
										7
Remar	ks		1	I		1			AGS	

h	C	5							Borehole N	lo.
	5	μ				Bo	reho	ole Log	WS12	2
con	sult	ing						0	Sheet 1 of	1
Projec	t Name:	Argoed Hig	gh Sch		Project No. C3250		Co-ords:	-	Hole Type WS	9
Locati	on.	Argoed Hig	ah Sch	nool			Level:		Scale	
		, "good i iii					20101		1:50	
Client		Gleeds Ma	anager	ment Services Lim	iited		Dates:	03/08/2020 -	Logged B HEB	У
Well	Water Strikes		s and Type	In Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
Rema		1.00 1.00 1.50 1.50	T	N=20 (3,3/5,5,5,5 50 (25 for 40mm/5 for 20mm))			MADE GROUND - Grass overlying sandy slightly gravelly clayey topsoi fine to coarse. Gravel is angular to r mixed lithologies and brick. Firm to very stiff slightly sandy grave Sand is fine to coarse. Gravel is sub rounded of mixed lithologies. End of borehole at 1.50 m	I. Sand is rounded of	
									AGS	5

								Trialpit N	٧o
	50					Tri	al Pit Log	TP10)1
	sulting							Sheet 1 c	
Projeo Name	ct Argoed	High Sch	nool	Projec C3250			Co-ords: -	Date	
				03250)		Level: Dimensions	03/08/20 Scale	
Locat	ion: Argoed	High Sch	1001				(m):	1:25	
Client	1		nent Services Limited		1	1	Depth 2.00	Loggeo HD	d
Water Strike	Sample	T T	n Situ Testing	Depth	Level	Legend	Stratum Description		
Str Va	Depth	Туре	Results	(m)	(m)				
	0.60	В		0.10			MADE GROUND - Grass overlying sandy clayey Sand is fine to coarse. Gravel is sub-angular to to of mixed lithologies. MADE GROUND - Brown sandy slightly gravelly Sand is fine to coarse. Gravel is sub-angular to of mixed lithologies.	rounded	
	1.00	В							1 -
	1.40	В							
	2.00	В		2.00			End of pit at 2.00 m		3-
Rema								AG	5


								Trialpit N	٧o
	S D					Tr	ial Pit Log	TP10	
	sulting						-	Sheet 1 c	
Proje Name	ct Argoed H	ligh Sch	ool	Projec C3250			Co-ords: -	Date 03/08/20	
				03250	J		Level: Dimensions	Scale	
Locat	ion: Argoed H	ligh Sch	ool				(m):	1:25	
Client	t: Gleeds N	/lanagem	nent Services Limited	ł			Depth 2.20	Loggeo HD	d
50	Sample	s and In	Situ Testing	Depth	Level				
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
We Str	Depth 0.40 1.00 1.20 1.50	Type B B B B	Results	(m) 0.10	(m)		MADE GROUND - Grass overlying sandy claye Sand is fine to coarse. Gravel is sub-angular to of mixed lithologies. MADE GROUND - Brown sandy slightly gravell Sand is fine to coarse. Gravel is sub-angular to of mixed lithologies.	rounded	2 -
Pomo	prko:								4
Rema Stabil								AG	S

h	c D							Trialpit N	No
	50					Tri	ial Pit Log	TP10	3
cons	sulting							Sheet 1 o	
Project Name:	Argoed I	High Scl	lool	Projec			Co-ords: -	Date	
				C3250)		Level: Dimensions	03/08/20 Scale	
Locatio	on: Argoed I	ligh Scl	lool				(m):	1:25	
Client:	Gleeds N	/lanage	ment Services Limited	l			Depth 1.00	Logge	d
			n Situ Testing					HD	
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.50	В		0.10			MADE GROUND - Grass overlying sandy claye Sand is fine to coarse. Gravel is sub-angular to of mixed lithologies. MADE GROUND - Brown sandy slightly gravell Sand is fine to coarse. Gravel is sub-angular to of mixed lithologies.	rounded	2
Remar Stabilit								AG	I S

h	s n							Trialpit N	
						Ir	al Pit Log	TP10	4
	sulting			Projec			Co-ords: -	Sheet 1 o Date	
Project Name:	Argoed I	High Sch	lool	C3250			Level:	03/08/20	
Locatio	on: Argoed I	ligh Sch	ool				Dimensions (m):	Scale 1:25	
Client:	Gleeds I	/anager	nent Services Limite	ed			Depth 1.20	Logge	
			n Situ Testing	Depth	Level	Legend		HD	
Water Strike	0.50	в	Results	(m) 0.20 1.20	(m)		MADE GROUND - Grass overlying sandy claye Sand is fine to coarse. MADE GROUND - Blackish brown very sandy s gravelly clay. Sand is fine to coarse. Gravel is s angular to sub-rounded of mixed lithologies, bric coal.	lightly ub-	1
									3
Remar Stabilit					<u> </u>			AG	

Appendix IV

Appendix V

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Amended Report

Report No.:	20-16651-2		
Initial Date of Issue:	07-Jul-2020	Date of Re-Issue:	08-Sep-2020
Client	HSP Consulting Engineers Limited		
Client Address:	Lawrence House Meadowbank Way Eastwood Nottinghamshire NG16 3SB		
Contact(s):	Howard Daley		
Project	C3250 Argoed High School		
Quotation No.:		Date Received:	01-Jul-2020
Order No.:	SC13380	Date Instructed:	01-Jul-2020
No. of Samples:	10		
Turnaround (Wkdays):	5	Results Due:	07-Jul-2020
Date Approved:	07-Jul-2020		
Approved By:			
Manney			

Details:

Glynn Harvey, Technical Manager

<u> Results - Soil</u>

Project: C3250 Argoed High School

Client: HSP Consulting Engineers											
Limited		Che	mtest J	ob No.:	20-16651	20-16651	20-16651	20-16651	20-16651	20-16651	20-16651
Quotation No.:		Chemte	est Sam	ple ID.:	1024785	1024786	1024787	1024789	1024792	1024793	1024794
		Sa	ample L	ocation:	WS01	WS02	WS02	WS03	WS04	WS04	WS05
		Sample Type:		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
			Top De	pth (m):	0.20	1.00	2.30	0.50	0.05	1.00	0.60
			Date Sa	ampled:	25-Jun-2020	25-Jun-2020	25-Jun-2020	25-Jun-2020	25-Jun-2020	25-Jun-2020	25-Jun-2020
			Asbest	os Lab:	COVENTRY		COVENTRY				
Determinand	Accred.	SOP	Units	LOD							
АСМ Туре	U	2192		N/A	-		-				
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected		No Asbestos Detected				
ACM Detection Stage	U	2192		N/A	-		-				
Moisture	Ν	2030	%	0.020	13	11				16	7.6
Soil Colour	N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material	N	2040		N/A	None	Stones	None	Stones	Stones	Stones	Stones
Soil Texture	Ν	2040		N/A	Clay	Sand	Clay	Clay	Sand	Clay	Sand
рН	М	2010		4.0	8.1	8.4				8.2	8.5
Boron (Hot Water Soluble)	Μ	2120	mg/kg	0.40	0.48	< 0.40					
Sulphate (2:1 Water Soluble) as SO4	Μ	2120	g/l	0.010	0.015	< 0.010				< 0.010	< 0.010
Total Sulphur	Μ	2175	%	0.010		< 0.010				< 0.010	< 0.010
Sulphur (Elemental)	М	2180	mg/kg	1.0	1.3	< 1.0					
Cyanide (Free)	М	2300	mg/kg	0.50	< 0.50	< 0.50					
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50	< 0.50					
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	4.0	1.7					
Sulphate (Acid Soluble)	М	2430	%	0.010		< 0.010				< 0.010	0.030
Arsenic	М	2450	mg/kg	1.0	5.9	8.7					
Cadmium	М	2450	mg/kg	0.10	< 0.10	< 0.10					
Chromium	М	2450	mg/kg	1.0	19	26					
Copper	M	2450	mg/kg	0.50	6.8	24					
Mercury	M	2450	mg/kg	0.10	< 0.10	< 0.10					
Nickel	M	2450	mg/kg	0.50	11	38					
Lead	M	2450	mg/kg	0.50	23	14					
Selenium	M	2450	mg/kg	0.20	< 0.20	< 0.20					
Zinc	М	2450	mg/kg	0.50	32	51					
Chromium (Hexavalent)	Ν	2490	mg/kg	0.50	< 0.50	< 0.50					
Organic Matter	М	2625	%	0.40		0.59					
Aliphatic TPH >C5-C6	N	2680		1.0	< 1.0	< 1.0					
Aliphatic TPH >C6-C8	Ν	2680	mg/kg	1.0	< 1.0	< 1.0					
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0	< 1.0					
Aliphatic TPH >C10-C12	M	2680	mg/kg	1.0	< 1.0	< 1.0					
Aliphatic TPH >C12-C16	М	2680	mg/kg	1.0	< 1.0	< 1.0					
Aliphatic TPH >C16-C21	М	2680		1.0	< 1.0	< 1.0					
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0	< 1.0	< 1.0					
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0					
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0					
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0					

<u> Results - Soil</u>

Project: C3250 Argoed High School

Client: HSP Consulting Engineers											
Limited		Che	mtest Jo	ob No.:	20-16651	20-16651	20-16651	20-16651	20-16651	20-16651	20-16651
Quotation No.:	(Chemtest Sample ID.:		1024785	1024786	1024787	1024789	1024792	1024793	1024794	
			ample Lo		WS01	WS02	WS02	WS03	WS04	WS04	WS05
			Sampl	e Type:	SOIL						
			Top Dep	oth (m):	0.20	1.00	2.30	0.50	0.05	1.00	0.60
			Date Sa	ampled:	25-Jun-2020						
			Asbest	os Lab:	COVENTRY		COVENTRY				
Determinand	Accred.	SOP	Units	LOD							
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0					
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0	< 1.0					
Aromatic TPH >C10-C12	М	2680	mg/kg	1.0	< 1.0	< 1.0					
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0	< 1.0	< 1.0					
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0					
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0	< 1.0	< 1.0					
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0					
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0					
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10					
Naphthalene	М	2700	mg/kg	0.10	< 0.10	< 0.10					
Acenaphthylene	М	2700	mg/kg	0.10	< 0.10	< 0.10					
Acenaphthene	М	2700	mg/kg	0.10	< 0.10	< 0.10					
Fluorene	М	2700	mg/kg	0.10	< 0.10	< 0.10					
Phenanthrene	М	2700	mg/kg	0.10	< 0.10	< 0.10					
Anthracene	М	2700	mg/kg	0.10	< 0.10	< 0.10					
Fluoranthene	М	2700	mg/kg	0.10	< 0.10	< 0.10					
Pyrene	М	2700	mg/kg	0.10	< 0.10	< 0.10					
Benzo[a]anthracene	М	2700	mg/kg	0.10	< 0.10	< 0.10					
Chrysene	М	2700	mg/kg	0.10	< 0.10	< 0.10					
Benzo[b]fluoranthene	М	2700	mg/kg	0.10	< 0.10	< 0.10					
Benzo[k]fluoranthene	М	2700	mg/kg	0.10	< 0.10	< 0.10					
Benzo[a]pyrene	М	2700	mg/kg	0.10	< 0.10	< 0.10					
Indeno(1,2,3-c,d)Pyrene	М	2700	mg/kg	0.10	< 0.10	< 0.10					
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.10	< 0.10	< 0.10					
Benzo[g,h,i]perylene	М	2700	mg/kg	0.10	< 0.10	< 0.10					
Total Of 16 PAH's	М	2700	mg/kg	2.0	< 2.0	< 2.0					
Benzene	М	2760	µg/kg	1.0	< 1.0	< 1.0					
Toluene	М	2760	µg/kg	1.0	< 1.0	< 1.0					
Ethylbenzene	М	2760	µg/kg	1.0	< 1.0	< 1.0					
m & p-Xylene	М	2760	µg/kg	1.0	< 1.0	< 1.0					
o-Xylene	М	2760	µg/kg	1.0	< 1.0	< 1.0					
Methyl Tert-Butyl Ether	М	2760	µg/kg	1.0	< 1.0	< 1.0					
Total Phenols	М	2920	mg/kg	0.30	< 0.30	< 0.30					

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key

1.09	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
	Comments or interpretations are beyond the scope of UKAS accreditation
	The results relate only to the items tested
	Uncertainty of measurement for the determinands tested are available upon request
	None of the results in this report have been recovery corrected
	All results are expressed on a dry weight basis
	The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Παιποροιτ			
Report No.:	20-20468-1		
Initial Date of Issue:	17-Aug-2020		
Client	HSP Consulting Engineers Limited		
Client Address:	Lawrence House Meadowbank Way Eastwood Nottinghamshire NG16 3SB		
Contact(s):	Howard Daley		
Project	C3250 Argoed High School		
Quotation No.:		Date Received:	06-Aug-2020
Order No.:		Date Instructed:	06-Aug-2020
No. of Samples:	8		
Turnaround (Wkdays):	5	Results Due:	12-Aug-2020
Date Approved:	17-Aug-2020		
Approved By:			
My May			
Details:	Glypp Harvey Technical Manager		

Glynn Harvey, Technical Manager

<u> Results - Soil</u>

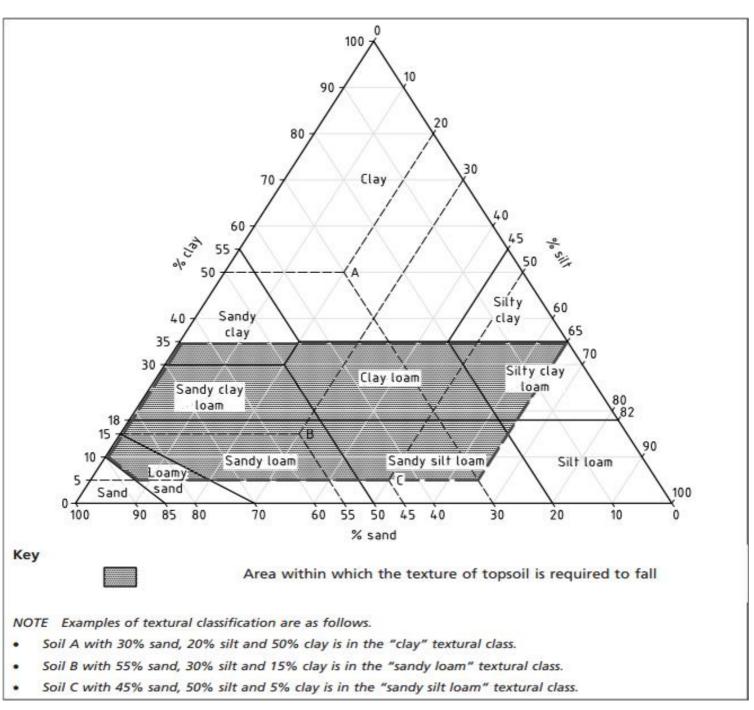
Project: C3250 Argoed High School

Client: HSP Consulting Engineers Limited		Che	mtest J	ob No.:	20-20468	20-20468	20-20468	20-20468	20-20468	20-20468	20-20468	20-20468
Quotation No.:	(Chemte	est Sam	ple ID.:	1043561	1043562	1043563	1043565	1043566	1043567	1043569	1043570
		Sa	ample L	ocation:	WS06	WS06	WS07	WS08	WS09	WS10	WS11	WS12
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):	0.30	1.70	0.10	0.35	1.50	0.10	2.50	1.00
			Date Sa	ampled:	03-Aug-2020	03-Aug-2020	03-Aug-2020	03-Aug-2020	03-Aug-2020	03-Aug-2020	03-Aug-2020	03-Aug-2020
			Asbest	os Lab:	COVENTRY			COVENTRY				
Determinand	Accred.	SOP	Units	LOD								
ACM Type	U	2192		N/A	-			-				
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected			No Asbestos Detected				
ACM Detection Stage	U	2192		N/A	-			-				
Moisture	N	2030	%	0.020	13	11	30	11	15	24	10	10
Soil Colour	N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material	N	2040		N/A	Stones	Stones	Stones and Roots	Stones and Roots	Stones	Roots and Stones	Stones	Stones
Soil Texture	N	2040		N/A	Clay	Clay	Sand	Sand	Sand	Sand	Sand	Sand
рН	М	2010		4.0	8.0	8.3	6.7	8.2	8.4	6.5	8.4	8.3
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	2.7	< 0.40	0.40	< 0.40		< 0.40		
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	1.7	0.012	0.054	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Total Sulphur	М	2175	%	0.010		< 0.010			0.013		0.020	0.020
Sulphur (Elemental)	М	2180	mg/kg	1.0	< 1.0	1.5	5.3	4.4		< 1.0		
Cyanide (Free)	М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50		< 0.50		
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50		< 0.50		
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	3.0	1.8	0.87	1.9		0.69		
Sulphate (Acid Soluble)	М	2430	%	0.010		< 0.010			< 0.010		< 0.010	< 0.010
Arsenic	М	2450	mg/kg	1.0	7.3	5.3	7.9	6.7		5.0		
Cadmium	М	2450	mg/kg	0.10	< 0.10	0.15	0.28	0.21		0.19		
Chromium	М	2450	mg/kg	1.0	22	17	19	18		14		
Copper	М	2450	mg/kg	0.50	36	20	14	12		12		
Mercury	М	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10		
Nickel	М	2450	mg/kg	0.50	17	28	14	17		13		
Lead	М	2450	mg/kg	0.50	18	15	60	61		49		
Selenium	М	2450	mg/kg	0.20	0.28	0.32	0.28	0.24		0.28		
Zinc	М	2450	mg/kg	0.50	80	56	59	60		61		
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50		< 0.50		
Organic Matter	М	2625	%	0.40	0.76		8.1	3.1		6.6		
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
Aliphatic TPH >C12-C16	М	2680	mg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
Aliphatic TPH >C35-C44	Ν	2680	mg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	[C] < 5.0	< 5.0	< 5.0		< 5.0		

<u> Results - Soil</u>

Project: C3250 Argoed High School

Client: HSP Consulting Engineers		Cho	mtest J	ah Na i	20-20468	20-20468	20-20468	20-20468	20-20468	20-20468	20-20468	20-20468
Limited		Che	miesi J	00 10	20-20466	20-20468	20-20466	20-20468	20-20466	20-20468	20-20408	20-20466
Quotation No.:	(Chemte	est Sam	ple ID.:	1043561	1043562	1043563	1043565	1043566	1043567	1043569	1043570
		Sa	ample L	ocation:	WS06	WS06	WS07	WS08	WS09	WS10	WS11	WS12
				e Type:	SOIL							
				pth (m):	0.30	1.70	0.10	0.35	1.50	0.10	2.50	1.00
			Date Sa	ampled:	03-Aug-2020							
			Asbest	tos Lab:	COVENTRY			COVENTRY				
Determinand	Accred.	SOP	Units	LOD								
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
Aromatic TPH >C10-C12	М	2680	mg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	[C] < 5.0	< 5.0	< 5.0		< 5.0		
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	[C] < 10	< 10	< 10		< 10		
Naphthalene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10		
Acenaphthylene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10		
Acenaphthene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10		
Fluorene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10		
Phenanthrene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10		
Anthracene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10		
Fluoranthene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		0.54		
Pyrene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		0.46		
Benzo[a]anthracene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10		
Chrysene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10		
Benzo[b]fluoranthene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10		
Benzo[k]fluoranthene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10		
Benzo[a]pyrene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10		
Indeno(1,2,3-c,d)Pyrene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10		
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10		
Benzo[g,h,i]perylene	М	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10		
Total Of 16 PAH's	М	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		
Benzene	М	2760	µg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
Toluene	М	2760	µg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
Ethylbenzene	М	2760	µg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
m & p-Xylene	М	2760	µg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
o-Xylene	М	2760	µg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
Methyl Tert-Butyl Ether	М	2760	µg/kg	1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0		< 1.0		
Total Phenols	М	2920	mg/kg	0.30	< 0.30	< 0.30	< 0.30	< 0.30		< 0.30		


Chemtest Job No.: 20-20468

Chemtest Sample ID.: 1043567 Client Sample Ref.: Sample Location: WS10 Client Sample ID.: Top Depth (m): 0.10 Bottom Depth (m): Date Sampled: 03-Aug-2020

Time Sampled:

Parameter	Units	Multipurpose Range	Result	Compliant with Multipurpose Range? (Y/N)	Compliant with Specific Purpose Range? (Y/N)		
Texture					Acid	Low F	Calc.
Clay content	%		23				
Silt content	%		23				
Sand content	%		55				
Soil texture class		See Attached Chart	Sandy Clay Loam	YES			
Mass Loss on Ignition							
Clay 5-20%		3.0-20	3.5	NO	NO	YES	NO
Clay 20-35%		5.0-20	3.5	NO	NO	TES	NO
Stone Content	% m/m						
>2mm		0-30	23	YES			
>20mm		0-10	< 0.020	YES			
>50mm		0	< 0.020	YES			
Soil pH value		5.5-8.5	6.5	YES	NO	YES	NO
Carbonate (Calcareous only)	%		2.3				YES
Electrical Conductivity	µS/cm	If >3300 do ESP	2200	YES			
Available Nutrient Content							
Nitrogen %		>0.15	0.40	YES	YES		YES
Extractable phosphorus	mg/l	16-140	2.1	NO	NO	YES	NO
Extractable potassium	mg/l	121-1500	1000	YES	YES		YES
Extractable magnesium	mg/l	51-600	1100	NO	NO		NO
Carbon : Nitrogen Ratio		<20:1	5.2/1	YES	YES	YES	YES
Exchangeable sodium	%	<15	0.76				
Available Calcium	mg/l		23000				
Available Sodium	mg/l		220				
Phytotoxic Contaminants (by soil pH)		< 6.0 6.0-7.0 > 7.0					
Zinc (Nitric Acid extract)	mg/kg	<200 <200 <300	69	YES			
Copper (Nitric Acid extract)	mg/kg	<100 <135 <200	15	YES			
Nickel (Nitric Acid extract)	mg/kg	<60 <75 <110	17	YES			
Visible Contaminants	% mm						
>2mm		<0.5	0.000	YES			
of which plastics		<0.25	0.000	YES			
man-made sharps		zero in 1kg	0.000	YES			

Topsoil: Texture Classification Chart

Permission to reproduce extracts from BS 3882:2015 is granted by BSI.

British Standards can be obtained in PDF or hard copy formats from the BSI online shop: www.bsigroup.com/Shop or by contacting BSI Customer Services for hardcopies only: Tel: +44 (0)20 8996 9001, Email: cservices@bsigroup.com.

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

s	Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1	043562			WS06	03-Aug-2020	С	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2020	Electrical Conductivity	Electrical conductivity (EC) of aqueous extract or calcium sulphate solution for topsoil	Measurement of the electrical resistance of a 2:1 water/soil extract.
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2115	Total Nitrogen in Soils	Nitrogen	Determination by elemental analyser
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2260	Carbonate	Carbonate	Titration
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2400	Cations	Cations	ICP-MS
2420	Phosphate	Phosphate	Spectrophotometry - Discrete analyser
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2620	LOI 440	LOI 440 Trommel Fines	Determination of the proportion by mass that is lost from a soil by ignition at 440°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)

Test Methods

SOP	Title	Parameters included	Method summary			
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	and halogenated Aliphatic/Aromatics (cf. USEPA Method 8260)*please refer to UKAS	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.			
2920	Phenols in Soils by HPLC	Phanal Mathylphanals Dimethylphanals 1-	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.			

Report Information

Key
,

ittey	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
	Comments or interpretations are beyond the scope of UKAS accreditation
	The results relate only to the items tested
	Uncertainty of measurement for the determinands tested are available upon request
	None of the results in this report have been recovery corrected
	All results are expressed on a dry weight basis
	The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Appendix VI

LABORATORY REPORT

4043

Contract Number: PSL20/3317

- Report Date: 07 September 2020
- Client's Reference: C3250
- Client Name: HSP Consulting Lawrence House 4 Meadowbank Way Eastwood Nottingham NG16 3SB

For the attention of: Howard Daley

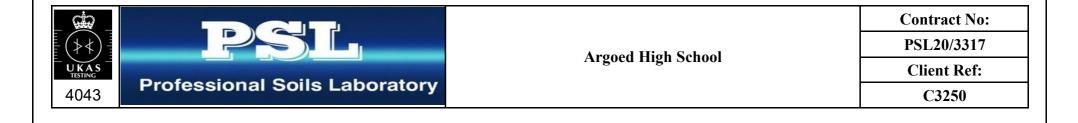
Contract Title:	Argoed High School
Date Received:	3/7/2020
Date Commenced:	3/7/2020
Date Completed:	4/8/2020

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson (Director) A Watkins (Director) R Berriman (Quality Manager)

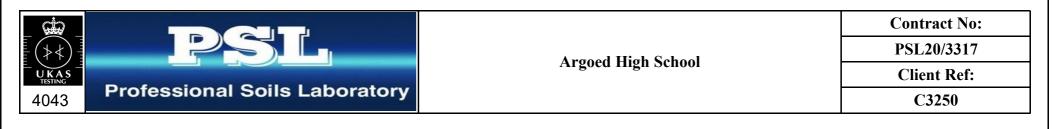

Ste

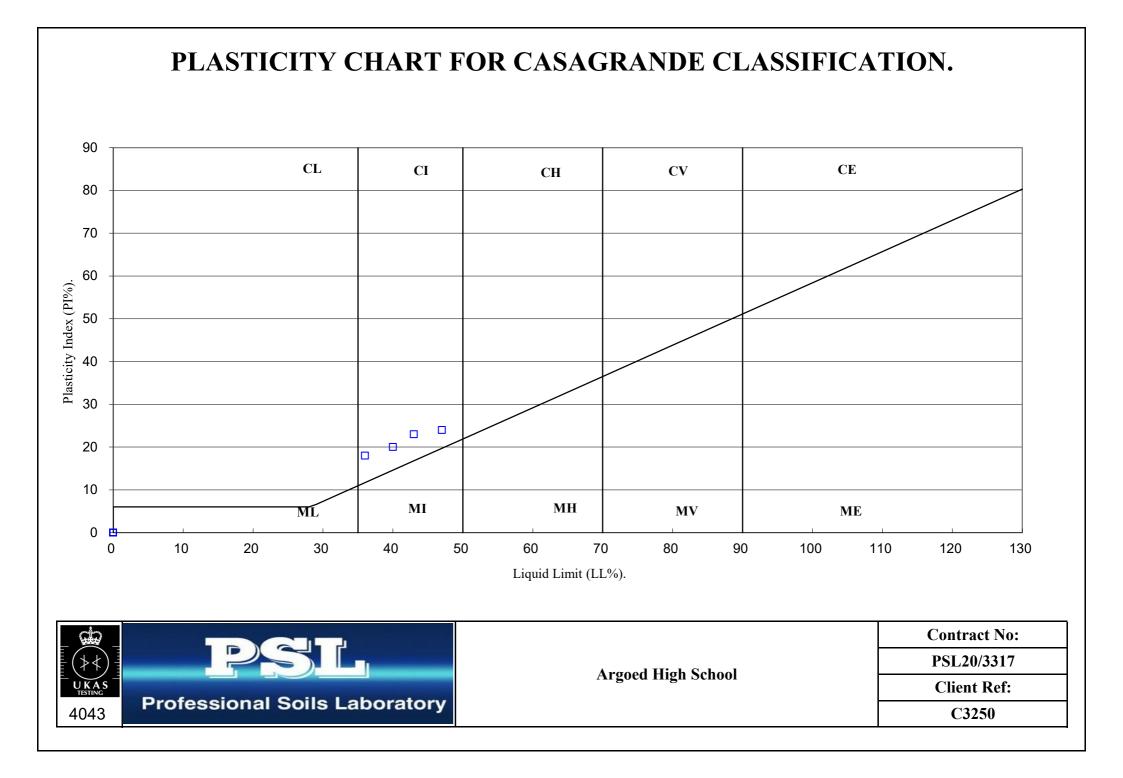
S Royle (Laboratory Manager) S Eyre (Senior Technician) L Knight (Senior Technician)

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
WS01		В	0.50		Brown mottled grey gravelly sandy CLAY.
WS01		В	1.50		Brown mottled grey gravelly sandy CLAY.
WS02		В	1.50		Brown mottled grey gravelly sandy CLAY.
WS02		В	3.00		Brown mottled grey gravelly sandy CLAY.
WS03		В	2.90		Grey sandy CLAY.
WS04		В	2.00		Brown mottled grey gravelly sandy CLAY.
WS04		В	3.00		Brown mottled grey gravelly sandy CLAY.
WS05		В	1.00		Brown slightly gravelly sandy CLAY.
WS05		В	3.00		Brown mottled grey sandy CLAY.

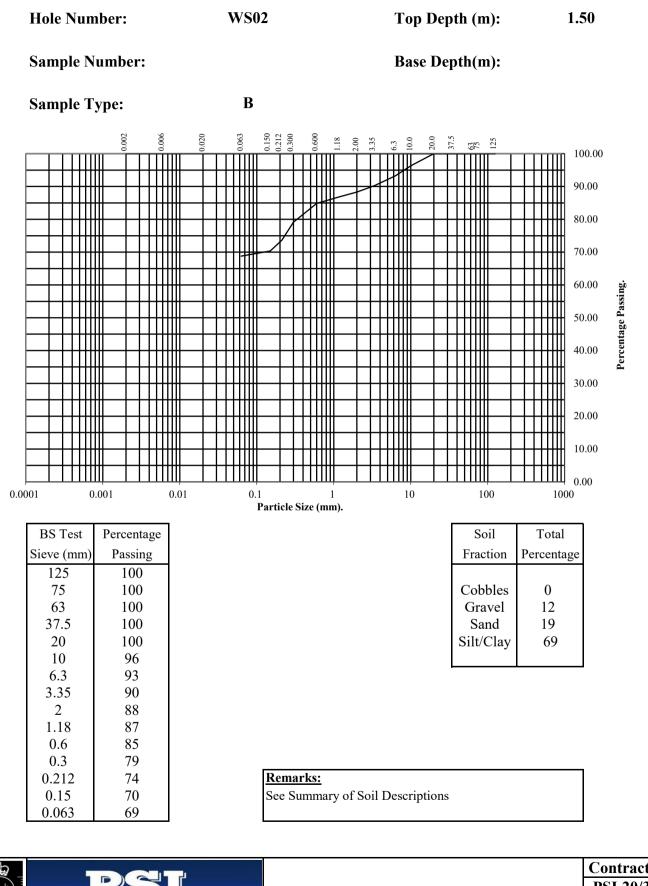

SUMMARY OF SOIL CLASSIFICATION TESTS

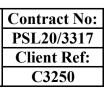

(BS1377 : PART 2 : 1990)

					Moisture	Linear	Particle	Liquid	Plastic	Plasticity	Passing	
Hole	Sample	Sample	Тор	Base	Content	Shrinkage	Density	Limit	Limit	Index	.425mm	Remarks
Number	Number	Туре	Depth	Depth	%	%	Mg/m ³	%	%	%	%	
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
WS01		В	0.50		15							
WS01		В	1.50		13			40	20	20	80	Intermediate plasticity CI.
WS02		В	1.50		14							
WS02		В	3.00		16			36	18	18	85	Intermediate plasticity CI.
WS03		В	2.90		13			43	20	23	100	Intermediate plasticity CI.
WS04		В	2.00		13							
WS04		В	3.00		10							
WS05		В	1.00		19			47	23	24	92	Intermediate plasticity CI.
WS05		В	3.00		11							

SYMBOLS : NP : Non Plastic

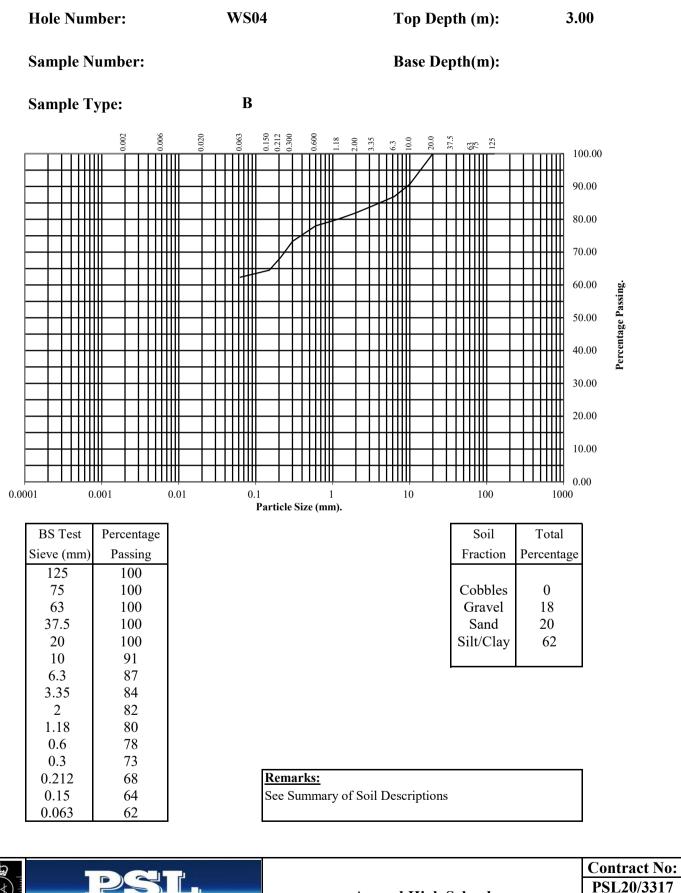
* : Liquid Limit and Plastic Limit Wet Sieved.




PARTICLE SIZE DISTRIBUTION TEST

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2



PARTICLE SIZE DISTRIBUTION TEST

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Argoed High School

Client Ref: C3250

PSL
Professional Soils Laboratory

4043

LABORATORY REPORT

4043

Contract Number: PSL20/4002

Report Date: 28 August 2020

- Client's Reference: C3250
- Client Name: HSP Consulting Lawrence House 4 Meadowbank Way Eastwood Nottingham NG16 3SB

For the attention of: Howard Daley

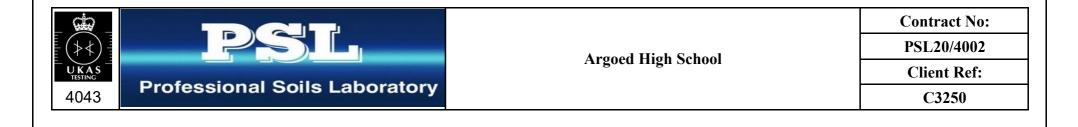
Contract Title:	Argoed High School
Date Received:	5/8/2020
Date Commenced:	5/8/2020
Date Completed:	28/8/2020

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson (Director) A Watkins (Director) R Berriman (Quality Manager)

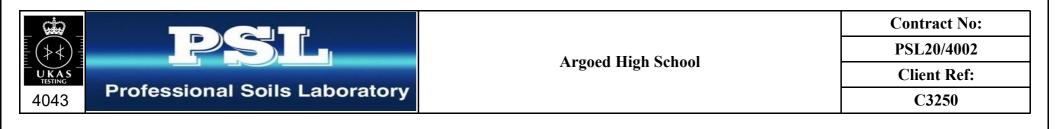

EKT

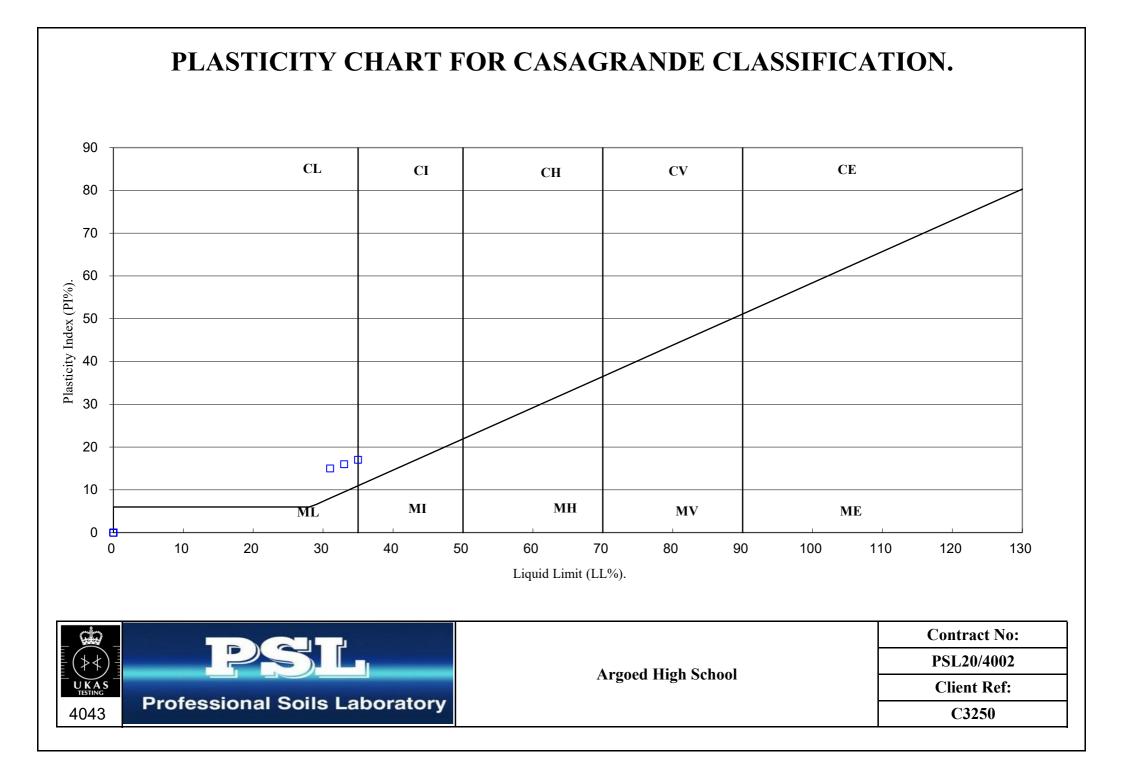
L Knight (Senior Technician) S Eyre (Senior Technician) S Royle (Laboratory Manager)

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

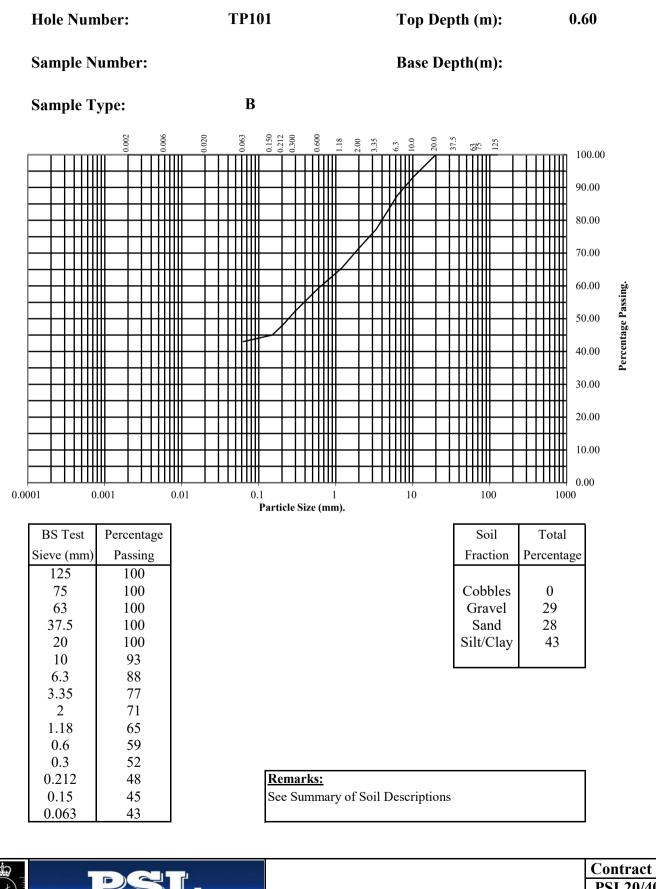
Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
TP101		В	0.60		Brown very gravelly very sandy CLAY.
TP101		В	1.00		Brown very gravelly very sandy CLAY.
TP101		В	1.40		Brown very gravelly very sandy CLAY.
TP101		В	2.00		Brown gravelly very sandy CLAY.
TP102		В	0.40		Brown very gravelly very sandy CLAY.
TP102		В	1.00		Brown very gravelly very sandy CLAY.
TP102		В	1.20		Brown very gravelly very sandy CLAY.
TP102		В	1.50		Brown very gravelly very sandy CLAY.
TP103		В	0.50		Brown very gravelly very sandy CLAY.
TP104		В	0.50		Brown very gravelly sandy CLAY.
WS06		В	0.50	1.50	Brown slightly gravelly very sandy CLAY.
WS09		D	0.90		Brown mottled grey slightly gravelly very sandy CLAY.
WS10		D	0.60		Brown slightly gravelly very sandy CLAY.
WS10		В	0.30	1.20	Brown slightly gravelly very sandy CLAY.
WS12		D	1.50		Brown slightly gravelly very sandy CLAY.

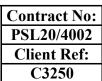

SUMMARY OF SOIL CLASSIFICATION TESTS


(BS1377 : PART 2 : 1990)

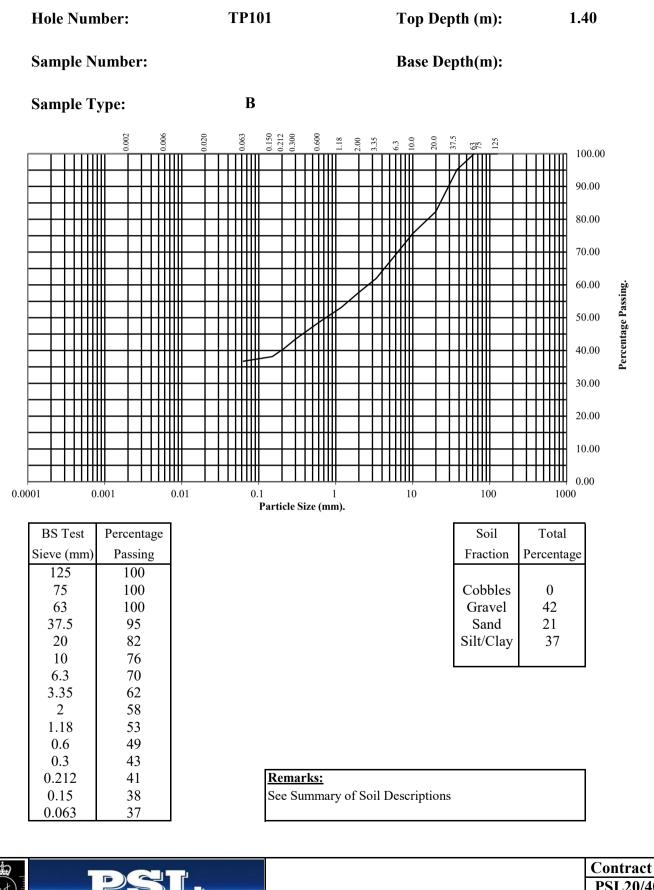
Hole	Sample	Sample	Тор	Base	Moisture Content	Linear Shrinkage	Particle Density	Liquid Limit	Plastic Limit	Plasticity Index	Passing .425mm	Remarks
Number	Number	Туре	Depth	Depth	%	%	Mg/m ³	%	%	%	%	i i i i i i i i i i i i i i i i i i i
		- 5 F -	m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4	, .	
WS09		D	0.90		15			31	16	15	93	Low plasticity CL.
WS10		D	0.60		15			35	18	17	97	Intermediate plasticity CI.
WS12		D	1.50		14			33	17	16	95	Low plasticity CL.

SYMBOLS : NP : Non Plastic

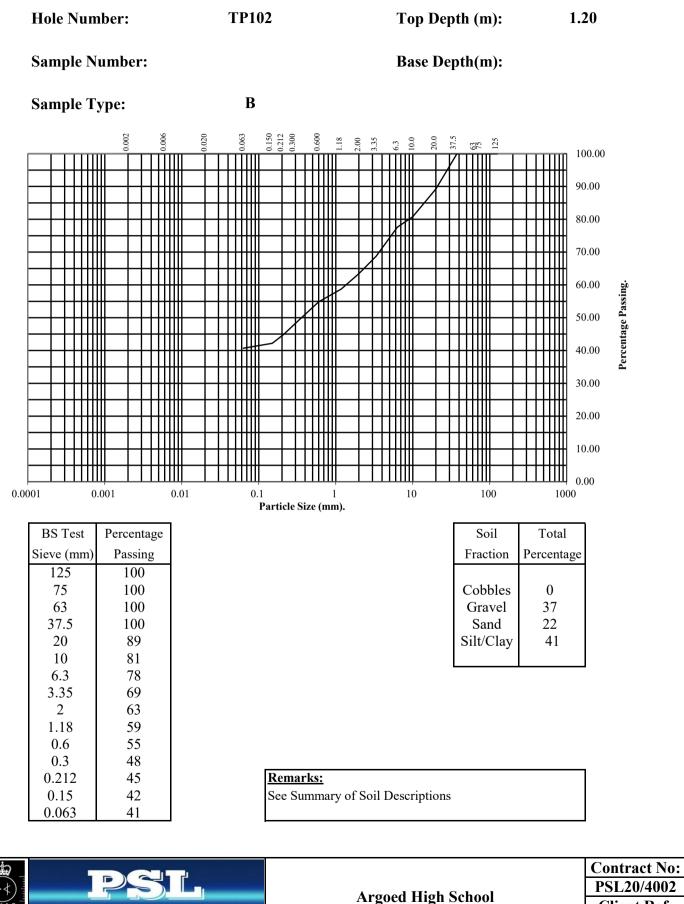

* : Liquid Limit and Plastic Limit Wet Sieved.


BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

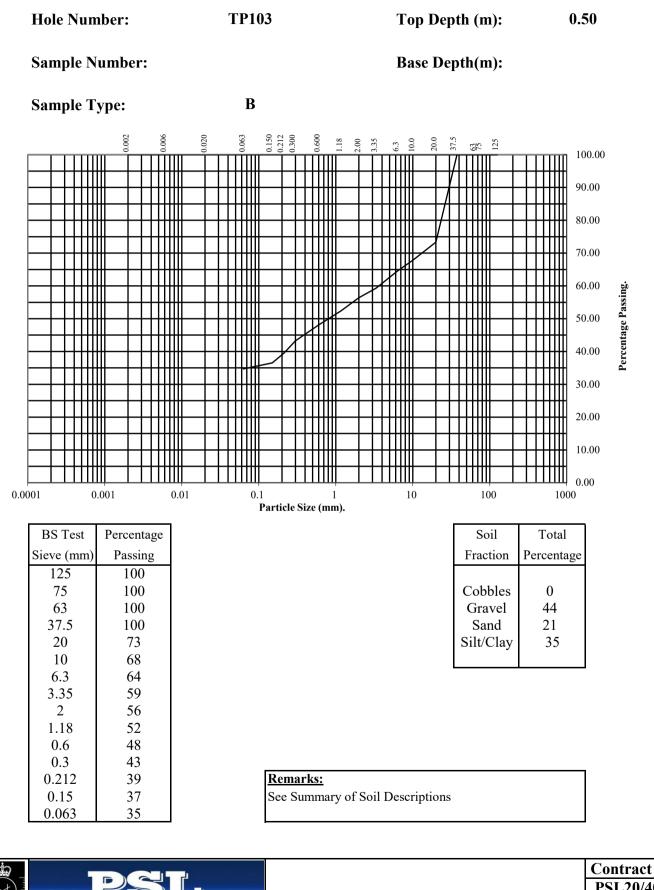

Professional Soils Laboratory

BS1377 : Part 2 : 1990

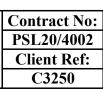

Wet Sieve, Clause 9.2

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

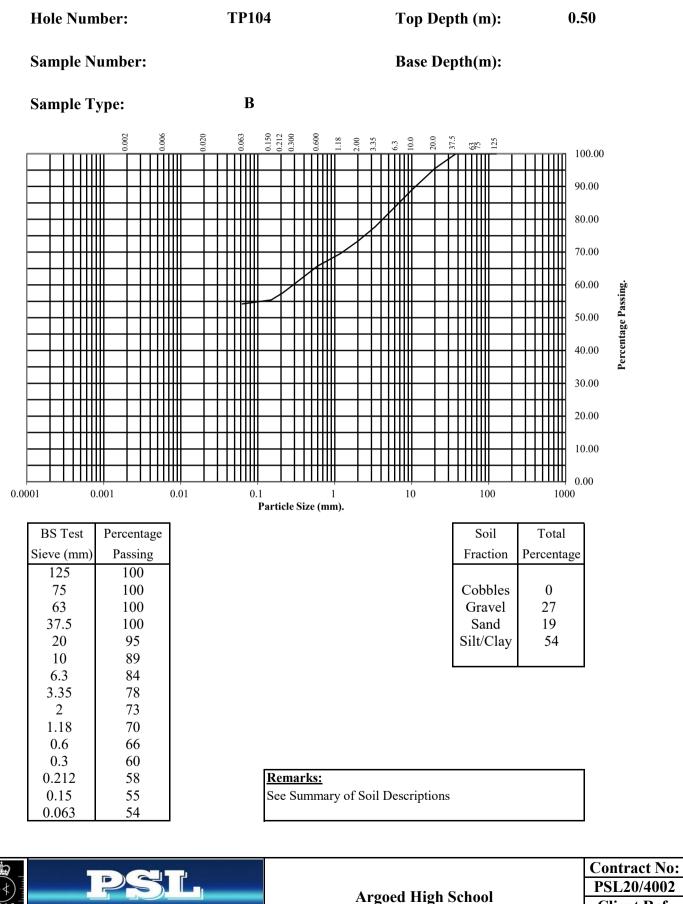

Client Ref:

C3250



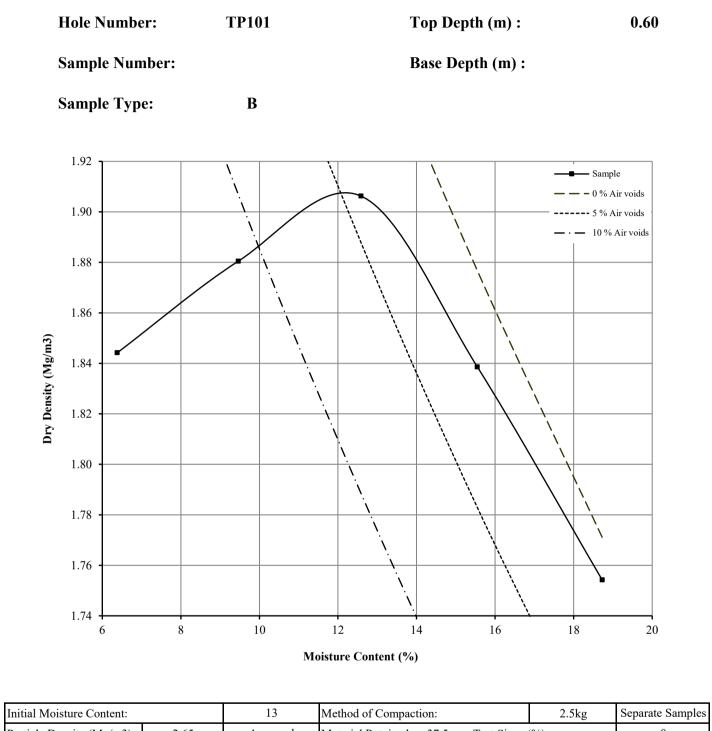
BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2



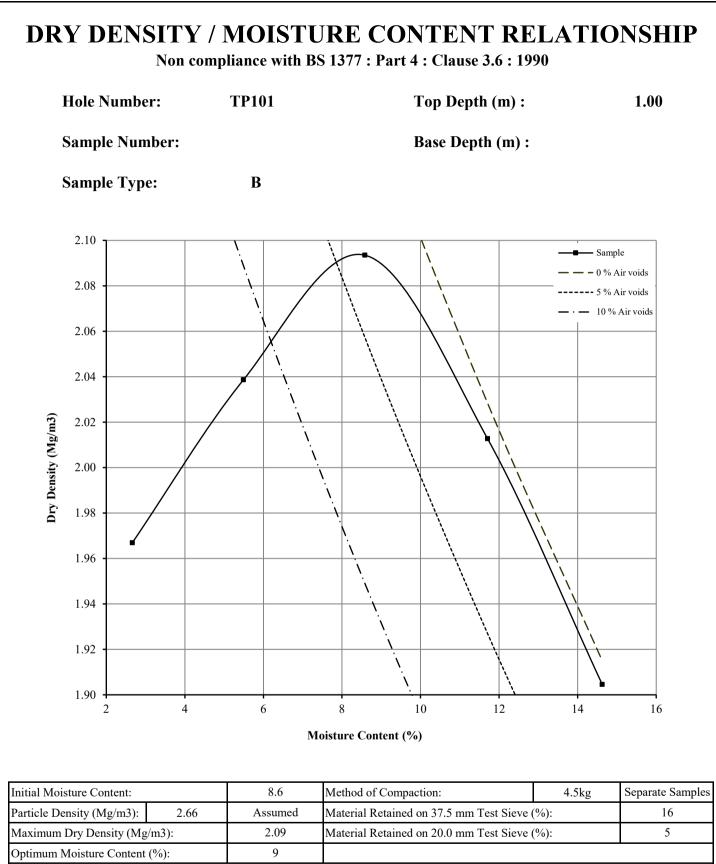
BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2



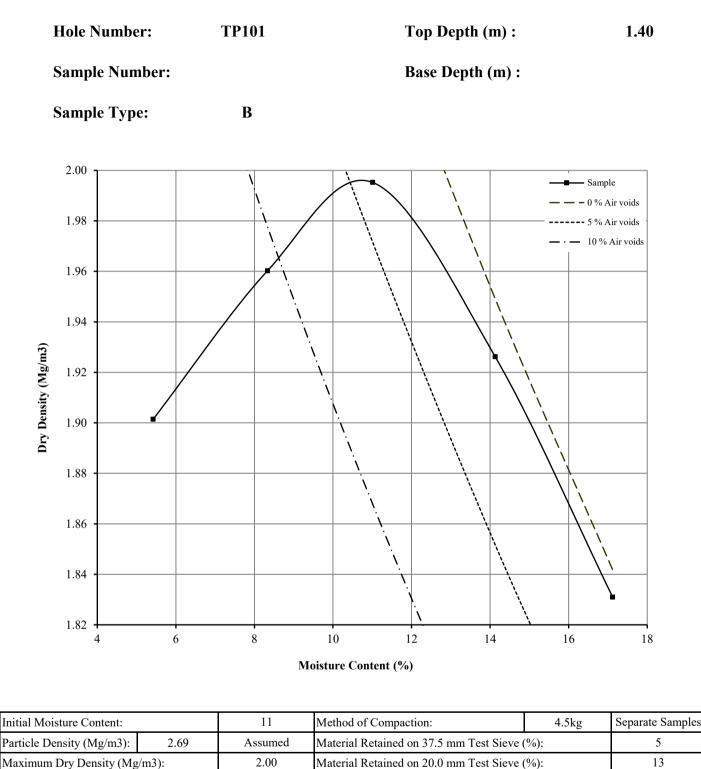
Client Ref:

C3250


BS 1377 : Part 4 : Clause 3.3 : 1990

mitial Wolstare Content.		15	Wethou of Compaction.	2.5Kg	Separate Samples
Particle Density (Mg/m3):	2.65	Assumed	Material Retained on 37.5 mm Test Sieve (%):		
Maximum Dry Density (Mg/m3):		1.91	Material Retained on 20.0 mm Test Sieve	(%):	0
Optimum Moisture Content	(%):	13			
Remarks					
See summary of soil descrip	tions.				

Contract
PSL20/4002
Client Ref
C3250


Remarks

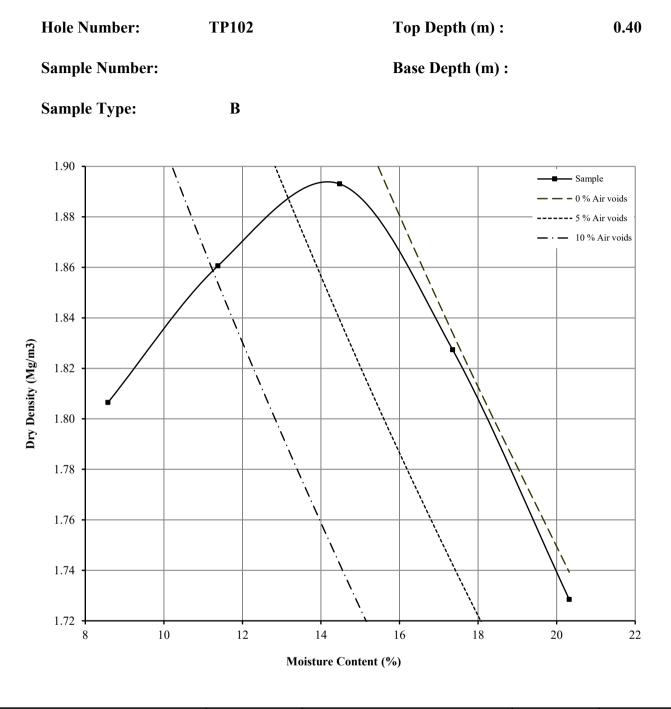
See summary of soil descriptions.

Contract
PSL20/4002
Client Ref
C3250

BS 1377 : Part 4 : Clause 3.6 : 1990

11

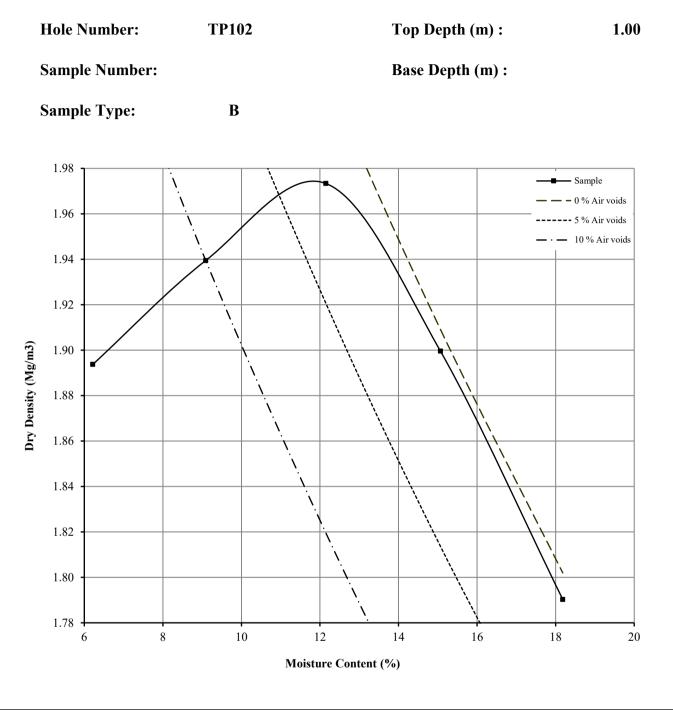
Remarks


See summary of soil descriptions.

Optimum Moisture Content (%):

Contract
PSL20/4002
Client Ref
C3250

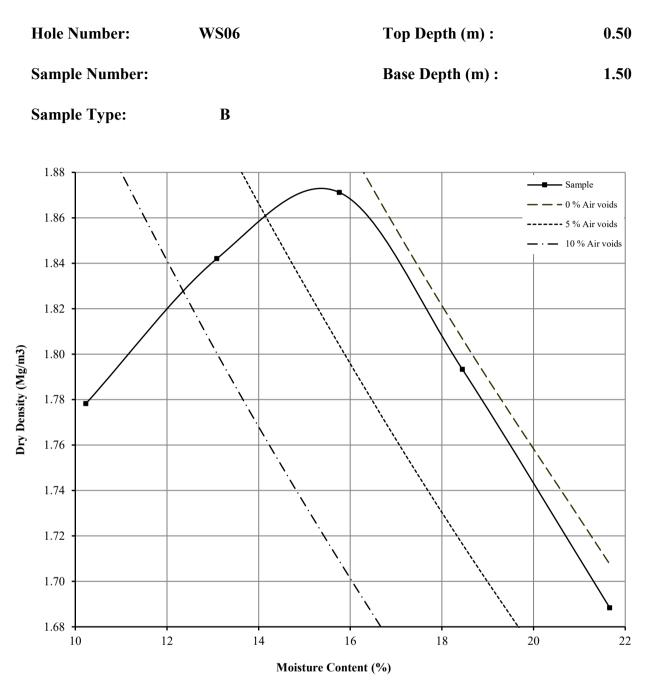
BS 1377 : Part 4 : Clause 3.4 : 1990



Initial Moisture Content:		11	Method of Compaction: 2.5kg		Separate Samples
Particle Density (Mg/m3): 2.69		Assumed	Material Retained on 37.5 mm Test Sieve (%):		0
Maximum Dry Density (Mg	/m3):	1.89	Material Retained on 20.0 mm Test Sieve (%):		14
Optimum Moisture Content	(%):	14			
Remarks					
See summary of soil descrip	tions.				

Contract
PSL20/4002
Client Ref
C3250

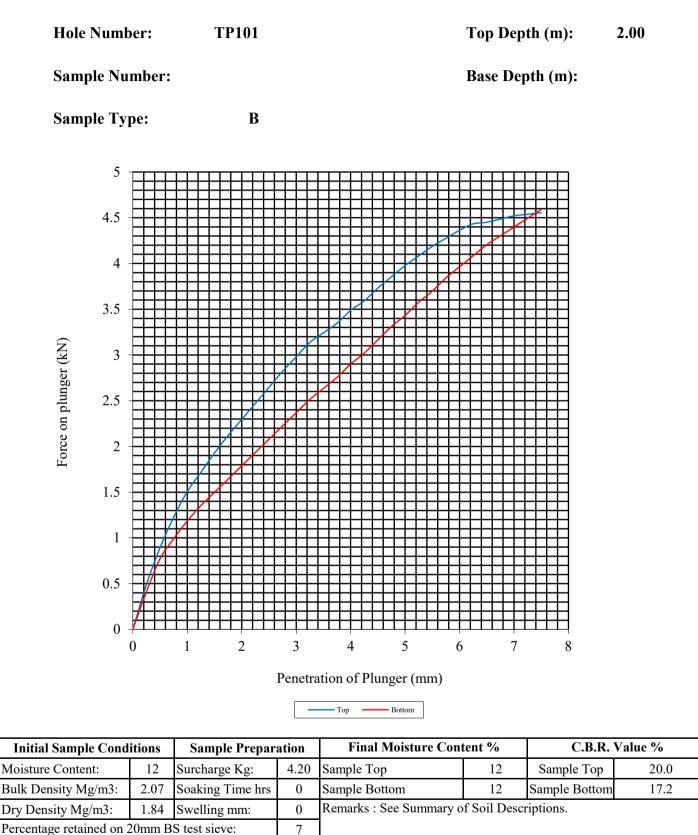
BS 1377 : Part 4 : Clause 3.6 : 1990

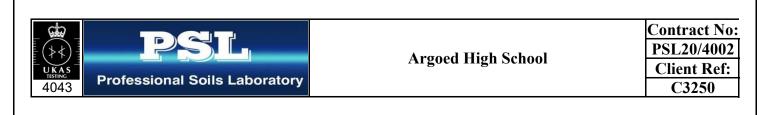


Initial Moisture Content:		9.1	Method of Compaction:	4.5kg	Separate Samples
Particle Density (Mg/m3): 2.68		Assumed	Material Retained on 37.5 mm Test Sieve (%):		0
Maximum Dry Density (Mg	/m3):	1.97	Material Retained on 20.0 mm Test Sieve	10	
Optimum Moisture Content	(%):	12			
Remarks					
See summary of soil descrip	tions.				

Contract
PSL20/4002
Client Ref
C3250

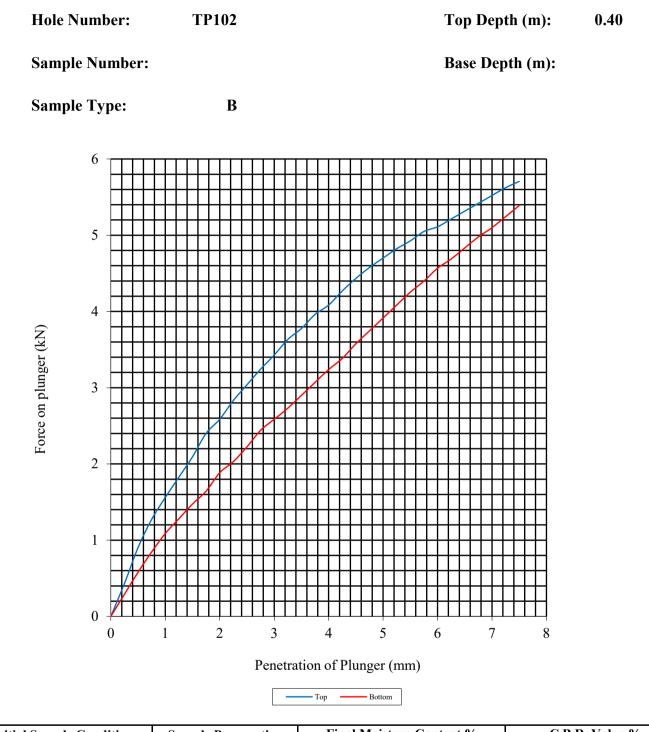
DRY DENSITY / MOISTURE CONTENT RELATIONSHIP BS 1377 : Part 4 : Clause 3.3 : 1990




Initial Moisture Content:		13	Method of Compaction: 2.5kg Sej		Separate Samples
Particle Density (Mg/m3): 2.71		Assumed	Material Retained on 37.5 mm Test Sieve (%):		0
Maximum Dry Density (Mg	/m3):	1.87	Material Retained on 20.0 mm Test Sieve	2	
Optimum Moisture Content	(%):	16			
Remarks					
See summary of soil descrip	tions.				

Contract
PSL20/4002
Client Ref
C3250

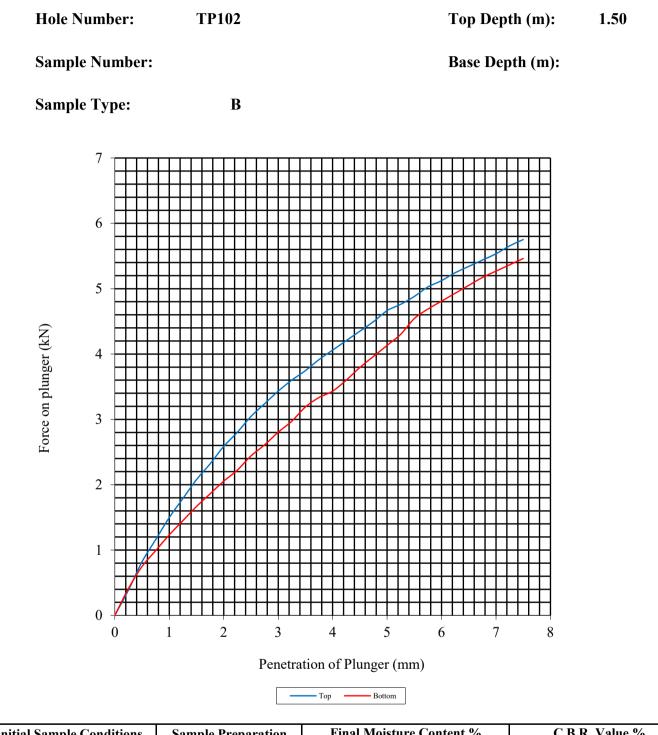
BS 1377 : Part 4 : 1990



2.5kg

Compaction Conditions

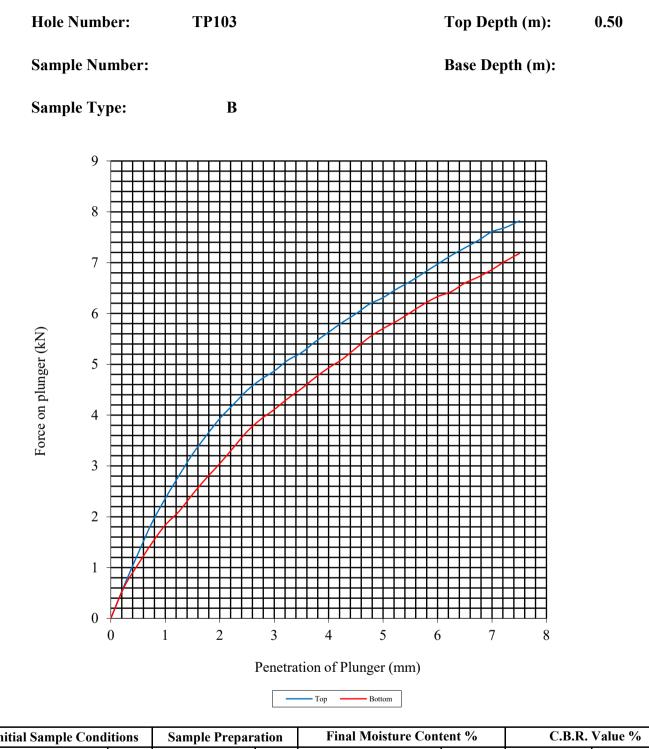
BS 1377 : Part 4 : 1990



Initial Sample Conditions		Sample Preparation		Final Moisture Content %		C.B.R. Value %	
Moisture Content:	11	Surcharge Kg:	4.20	Sample Top	11	Sample Top	23.5
Bulk Density Mg/m3:	2.07	Soaking Time hrs	0	Sample Bottom	11	Sample Bottom	19.6
Dry Density Mg/m3:	1.86	Swelling mm:	0	Remarks : See Summary of Soil Descriptions.			
Percentage retained on 20mm BS test sieve:			14				
Compaction Conditions 2.5kg							

Contract No:
PSL20/4002
Client Ref:
C3250

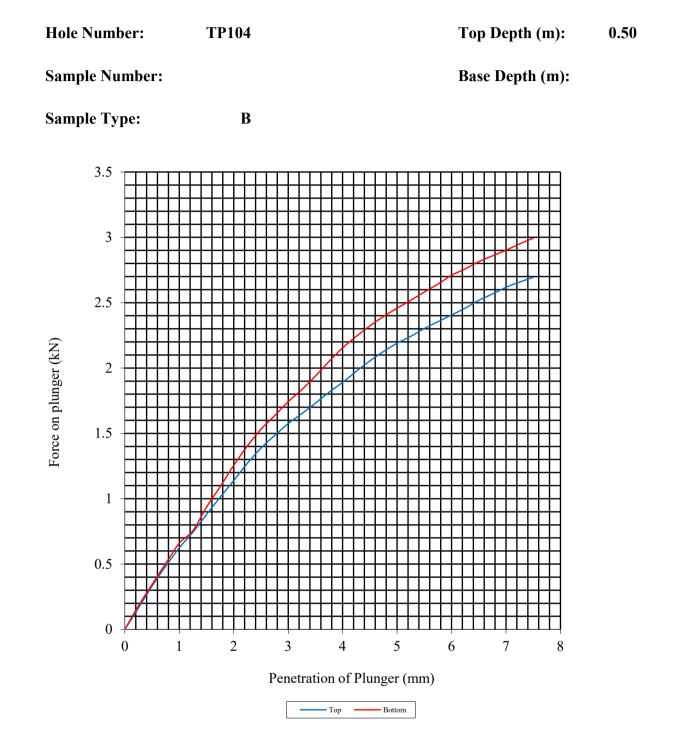
BS 1377 : Part 4 : 1990



Initial Sample Conditions		Sample Preparation		Final Moisture Content %		C.B.R. Value %	
Moisture Content:	12	Surcharge Kg:	4.20	Sample Top	12	Sample Top	23.3
Bulk Density Mg/m3:	2.12	Soaking Time hrs	0	Sample Bottom	12	Sample Bottom	20.7
Dry Density Mg/m3:	1.89	Swelling mm:	0	Remarks : See Summary of Soil Descriptions.			
Percentage retained on 20mm BS test sieve:			13				
Compaction Conditions 2.5kg							

Contract No:
PSL20/4002
Client Ref:
C3250

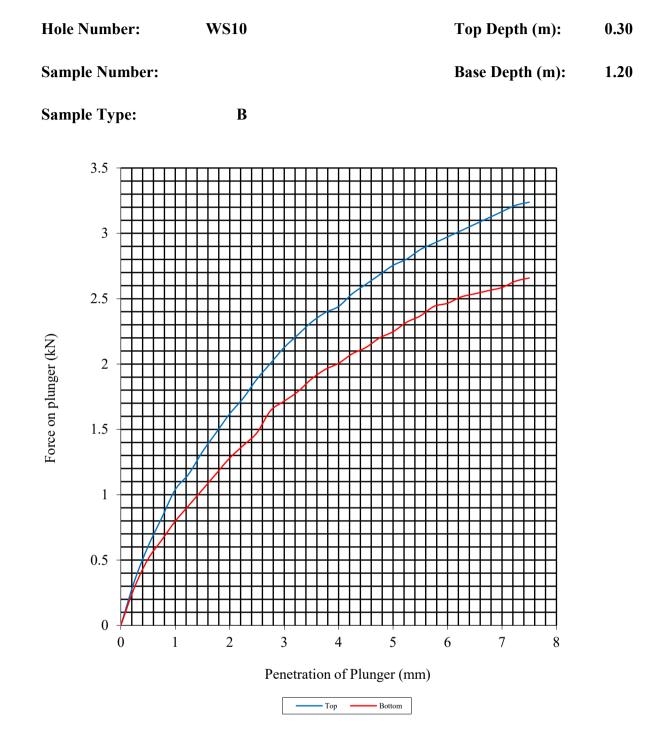
Non compliance with BS 1377 : Part 4 : 1990



Initial Sample Conditions		Sample Preparation		Final Moisture Content %		C.B.R. Value %	
Moisture Content:	8.3	Surcharge Kg:	4.20	Sample Top	8.4	Sample Top	34.0
Bulk Density Mg/m3:	1.97	Soaking Time hrs	0	Sample Bottom	8.1	Sample Bottom	28.5
Dry Density Mg/m3: 1.82 Swelling mm:			0	Remarks : See Summary o	of Soil Descr	riptions.	
Percentage retained on 20mm BS test sieve:			27				
Compaction Conditions 2.5kg							

Contract No:
PSL20/4002
Client Ref:
C3250

BS 1377 : Part 4 : 1990



Initial Sample Conditions		Sample Preparation		Final Moisture Content %		C.B.R. Value %	
Moisture Content:	20	Surcharge Kg:	4.20	Sample Top	20	Sample Top	11.0
Bulk Density Mg/m3:	1.92	Soaking Time hrs	0	Sample Bottom	20	Sample Bottom	12.3
Dry Density Mg/m3: 1.60 Swelling mm:			0	Remarks : See Summary o	f Soil Desci	riptions.	
Percentage retained on 20mm BS test sieve:			5				
Compaction Conditions 2.5kg							

Contract No:
PSL20/4002
Client Ref:
C3250

BS 1377 : Part 4 : 1990

Initial Sample Conditions		Sample Preparation		Final Moisture Content %		C.B.R. Value %	
Moisture Content:	16	Surcharge Kg:	4.20	Sample Top	16	Sample Top	14.3
Bulk Density Mg/m3:	2.15	Soaking Time hrs	0	Sample Bottom	16	Sample Bottom	11.2
Dry Density Mg/m3: 1.86 Swelling mm:		0	Remarks : See Summary o	f Soil Desci	riptions.		
Percentage retained on 20mm BS test sieve:			2				
Compaction Conditions 2.5kg							

Contract No:
PSL20/4002
Client Ref:
C3250

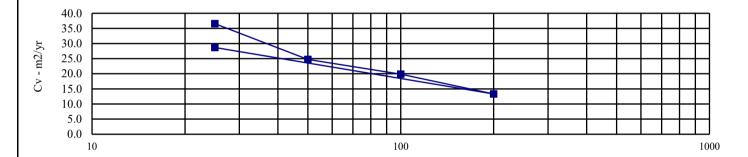
ONE DIMENSIONAL CONSOLIDATION TEST

BS 1377: Part 5: 1990: Clause 3

Hole Number:

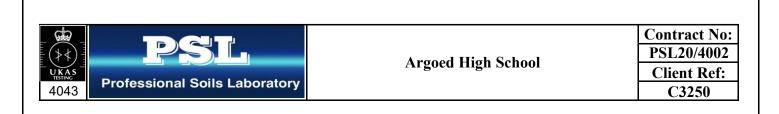
TP102

B


Top Depth (m): 1.50

Sample Number:

Base Depth (m) :


Sample Type:

Initial Conditions		Pressure Range		Mv	Cv	Specimen location		
Moisture Content (%):	14	kPa		m2/MN	m2/yr	within tube: To		
Bulk Density (Mg/m3):	2.14	0	25	0.148	36.561	Method used to		
Dry Density (Mg/m3):	1.88	25	50	0.176	24.733	determine CV:	Т90	
Voids Ratio:	0.411	50	100	0.255	19.837	Nominal temperature		
Degree of saturation:	88.3	100	200	0.224	13.318	during test ' C:	20	
Height (mm):	20.296	200	25	0.152	28.665	Remarks:		
Diameter (mm)	75.038					See summary of soil descriptions		
Particle Density (Mg/m3):	2.65							
Assumed	2.03							

 $\begin{array}{c} 10 \\ 0.410 \\ 0.400 \\ 0.300 \\ 0.$

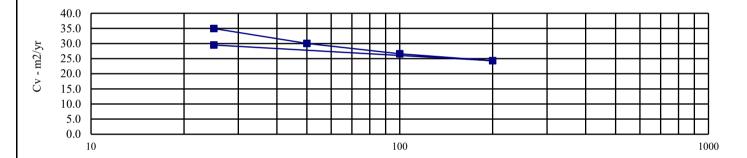
ONE DIMENSIONAL CONSOLIDATION TEST

BS 1377: Part 5: 1990: Clause 3

Hole Number:

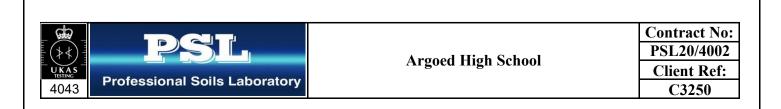
TP102

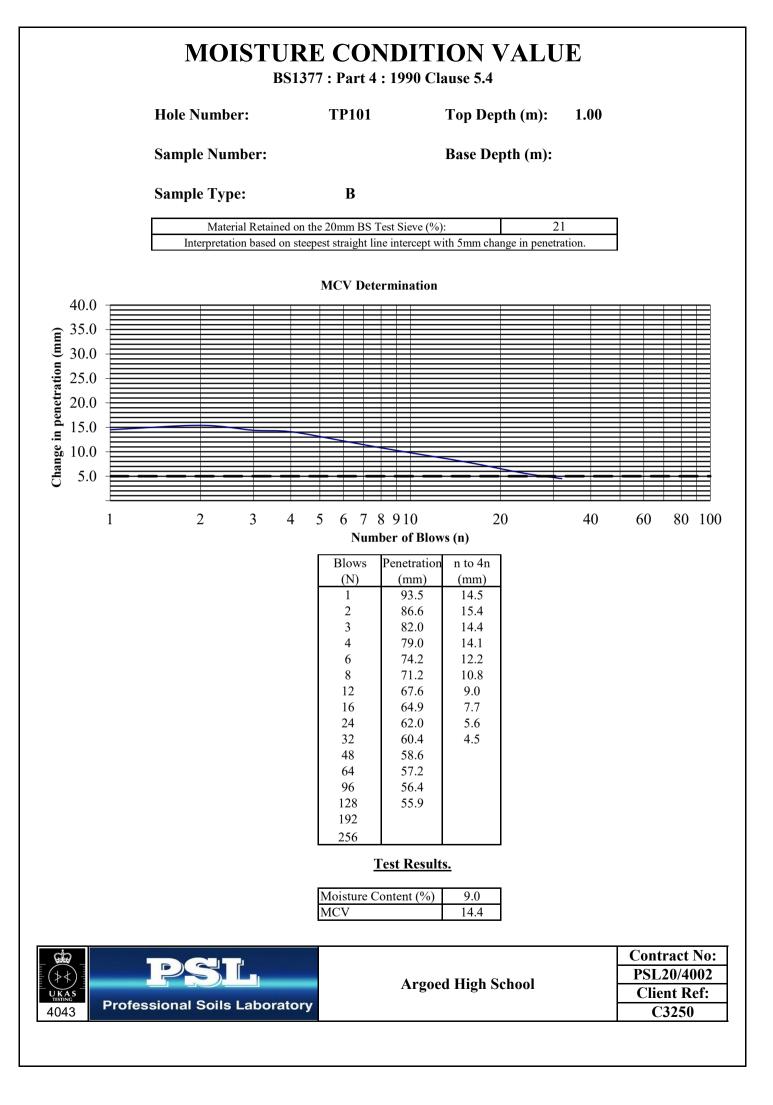
B

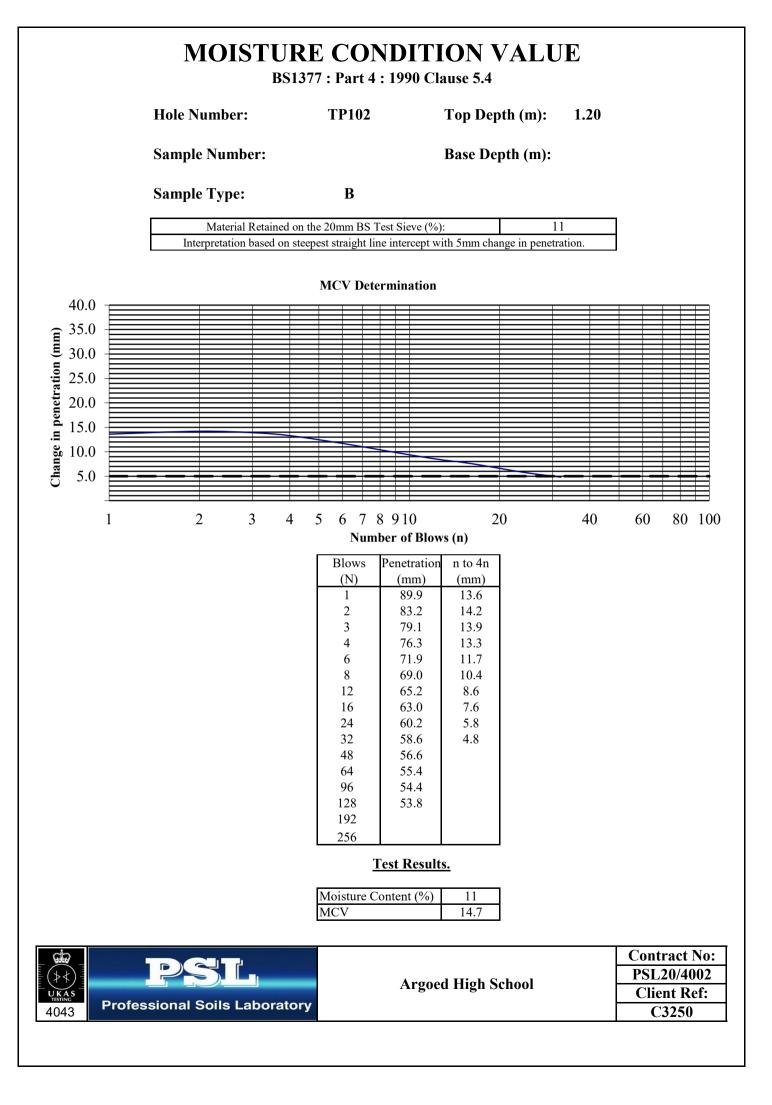

Top Depth (m): 1.50

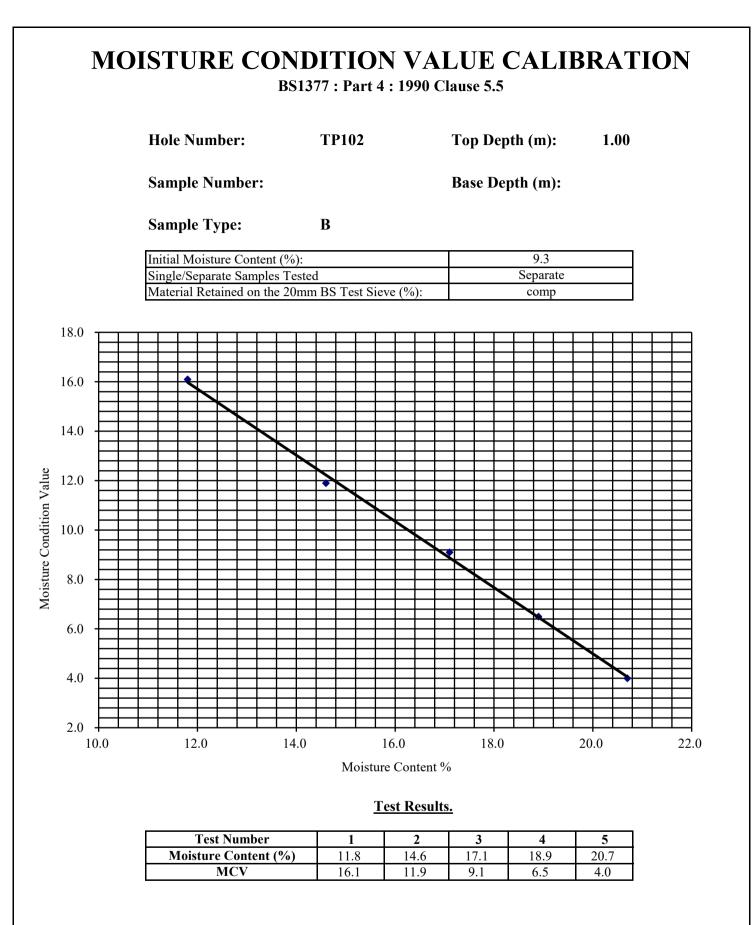
```
Sample Number:
```

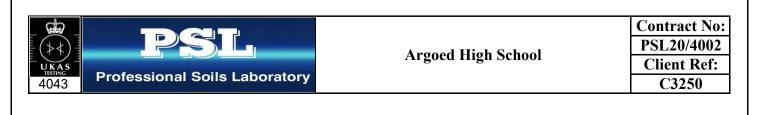
Base Depth (m) :

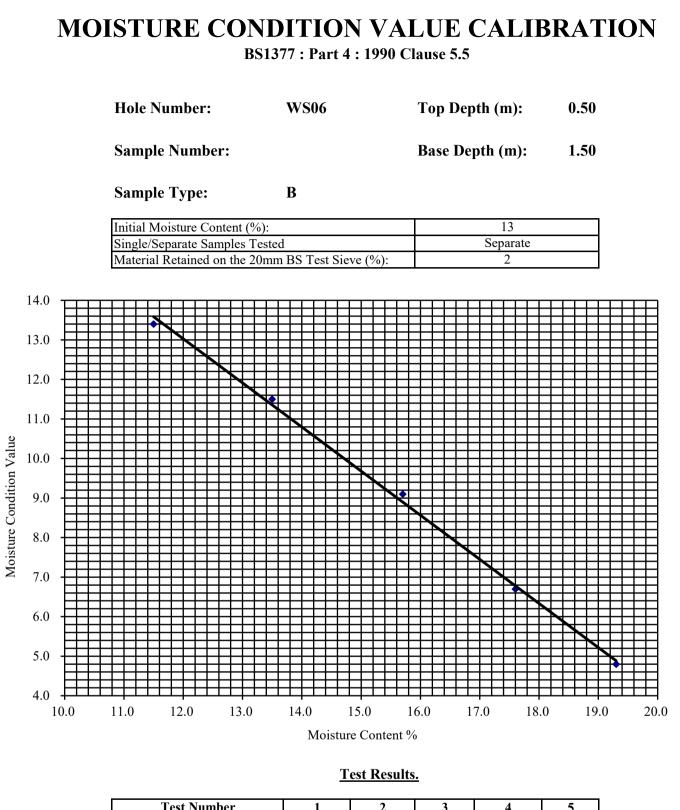

Sample Type:

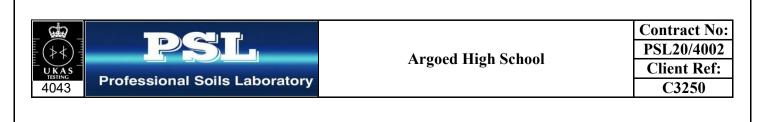

Initial Conditions	Pressure Range		Mv	Cv	Specimen location			
Moisture Content (%):	16	kPa		m2/MN	m2/yr	within tube:	Тор	
Bulk Density (Mg/m3):	2.15	0	25	0.139	34.953	Method used to		
Dry Density (Mg/m3):	1.85	25	50	0.266	30.037	determine CV:	T90	
Voids Ratio:	0.432	50	100	0.257	26.597	Nominal temperature		
Degree of saturation:	98.5	100	200	0.187	24.317	during test ' C:	20	
Height (mm):	20.088	200	25	0.101	29.518	Remarks:		
Diameter (mm)	75.048					See summary of soil descriptions		
Particle Density (Mg/m3):	2.65							
Assumed	2.03							






 $\begin{array}{c} 10 \\ 0.430 \\ 0.420 \\ 0.410 \\ 0.410 \\ 0.400 \\ 0.390 \\ 0.380 \\ 0.370 \end{array} \begin{array}{c} 100 \\ 0.40 \\ 0.40 \\ 0.370 \end{array} \begin{array}{c} 100 \\ 0.40 \\ 0$





Test Number	1	2	3	4	5
Moisture Content (%)	11.5	13.5	15.7	17.6	19.3
MCV	13.4	11.5	9.1	6.7	4.8

CBR Test Results (MEXE Probe)

Job No.	C3250								
Job Name									
Date	August 2020								
MP1									
Position			ı (mm)						
	150	300	450	600					
P1	Т	14	1						
P2	о	8	14						
P3	р	3	4	8					
P4	S	3	4	7					
P5	о	14							
Minimum CBR	i			7.0					
Value	I	3.0	4.0	7.0					
		MP2							
Position			ı (mm)						
	150	300	450	600					
P1	т	14							
P2	0	14							
Р3	p	3	5	7					
P4	۳ S	3	8	14					
P5	0	3	14						
Minimum CBR	i								
Value	I	3.0	5.0	7.0					
	•	MP3	-	-					
Position			ı (mm)						
	150	300	450	600					
P1	т	3	4	7					
P2	0	14	1						
Р3	р	14	1						
P4	S	8	14						
Р5	о	3	8	14					
Minimum CBR	i	2.0	4.0	7.0					
Value	I	3.0	4.0	7.0					
		MP4							
Position		Depth	ı (mm)						
	150	300	450	600					
P1	Т	3	4	14					
P2	о	3	4	8					
Р3	р	3	4	7					
	1	14							
P4	S	14							
P4 P5	S O	14							
			4.0	7.0					

If Empty - Means unable to penetrate further due to strata strength

CBR Test Results (Mexecone)

Job No.	C3250	-							
Job Name	Argoed Hig	Argoed High School							
Date	August 202	20							
MP5									
Position		Depth	(mm)						
	150	300	450	600					
P1	Т	14							
P2	о	14							
Р3	р	3	14						
P4	S	3	6	9					
Р5	о	3	6	9					
Minimum CBR Value	i I	3.0	6.0	9.0					

MP6									
Position		Depth	(mm)						
	150	300	450	600					
P1	Т	6	6	8					
P2	0	5	8	9					
Р3	р	6	8	14					
P4	S	14	8	14					
Р5	0	6	14						
Minimum CBR Value	i I	5.0	6.0	8.0					

MP7									
Position		Depth	(mm)						
	150	300	450	600					
P1	Т	3	4	7					
P2	о	14							
Р3	р	14							
P4	S	8	14						
Р5	0	3	4	8					
Minimum CBR Value	i I	3.0	4.0	7.0					

If Empty - Means unable to penetrate further due to strata strength

Appendix VII

Waste Classification Report

Job name					
C3250 Argoed High Scho	ol				
Description/Comme	ents				
-					
Project					
C3250 Argoed High Scho	ol				
Site					
C3250 Argoed High Scho	ol				
<u> </u>					
Related Documents					
# Name		Description			
		hwol file used to create the Job			
Waste Stream Temp	alato				
Example waste stream ter	mplate for contaminated soils				
Classified by					
Name:	Company:	HazWasteOnline™ Training Record:			
Howard Daley	HSP Consulting Engineers Limited		_ .		
Date:	Lawrence House 4 Meadowbank W	ay Course Hazardous Waste Classification	Date 11 Feb 2020		
08 Sep 2020 13:25 GMT	Eastwood	Advanced Hazardova Waste Classification	11 Feb 2020		

Report

Telephone:

01773 535555

Created by: Howard Daley Created date: 08 Sep 2020 13:25 GMT

4 Meadowbank Way, Eastwood

Nottingham

NG16 3SB

Job summary

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	WS06 0.30m	0.30	Non Hazardous		3
2	WS06 1.70m	1.70	Non Hazardous		6
3	WS07 0.10m	0.10	Non Hazardous		9
4	WS08 0.35m	0.35	Non Hazardous		12
5	WS09 1.50m	1.50	Non Hazardous		15
6	WS10 0.10m	0.10	Non Hazardous		16
7	WS11 2.50m	2.50	Non Hazardous		19
8	WS12 1.00m	1.00	Non Hazardous		20

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	21

Advanced Hazardous Waste Classification 12 Feb 2020

HazWasteOnline[™] Report created by Howard Daley on 08 Sep 2020

Appendices	Page
Appendix B: Rationale for selection of metal species	22
Appendix C: Version	23

Classification of sample: WS06 0.30m

Sample details

cluding excavated soil
mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 13% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4		,	1327-53-3		7.3	mg/kg	1.32	8.385 mg/	g 0.000839 %	∠	
2	~	boron { diboron trio	xide; boric oxide }	1303-86-2	_	2.7	mg/kg	3.22	7.563 mg/	.g 0.000756 %	\checkmark	
3	~	cadmium { cadmiur		1306-19-0	-	<0.1	mg/kg	1.142	<0.114 mg/	.g <0.0000114 %	ſ	<lod< th=""></lod<>
4	~	chromium in chrom <mark>oxide (worst case)</mark>	ium(III) compounds			22	mg/kg	1.462	27.974 mg/	.g 0.0028 %	~	
5	4	chromium in chrom <mark>oxide</mark> }				<0.5	mg/kg	1.923	<0.962 mg/	.g <0.0000962 %		<lod< th=""></lod<>
6	~			d <mark>e</mark> } 1317-39-1		36	mg/kg	1.126	35.263 mg/	.g 0.00353 %	\checkmark	
7	4		<mark>te</mark> } 231-846-0	7758-97-6	1	18	mg/kg	1.56	24.427 mg/	g 0.00157 %	\checkmark	
8	4			7487-94-7		<0.1	mg/kg	1.353	<0.135 mg/	g <0.0000135 %		<lod< td=""></lod<>
9	~		<mark>nate</mark> } 238-766-5	14721-18-7	_	17	mg/kg	2.976	44.019 mg/	.g 0.0044 %	\checkmark	
10	~	selenium { seleniur cadmium sulphose in this Annex } 034-002-00-8			_	0.28	mg/kg	2.554	0.622 mg/	.g 0.0000622 %	~	
11	4	zinc { zinc chromat	<mark>e</mark> } 236-878-9	13530-65-9	-	80	mg/kg	2.774	193.081 mg/	.g 0.0193 %	\checkmark	
12	8	TPH (C6 to C40) p	• •	ТРН		<10	mg/kg		<10 mg/	.g <0.001 %		<lod< th=""></lod<>
13		tert-butyl methyl eth 2-methoxy-2-methy	Ipropane	1634 04 4		<0.001	mg/kg		<0.001 mg/	.g <0.0000001 %		<lod< th=""></lod<>
13		, ,		1634-04-4		<0.001	iiig/kg		<0.001 Hig/	.9 <0.000001 /8		

HazWasteOnline[™] Report created by Howard Daley on 08 Sep 2020

Bit D20:00 Display Bit D21:00:03 Display Bit D21:00:00:01 Microplay Bit D21:00:00:01 Microplay Bit D21:00:00:00:01 Clope Bit D21:00:00:00:00:00:00:00:00:00:00:00:00:00			Contour											
Image:	#		CI P index number		CAS Number	P Note	User entered	data		Compound c	onc.		C Applied	
Bit Bit <td></td> <td></td> <td></td> <td></td> <td>CAS Number</td> <td>С</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ž</td> <td></td>					CAS Number	С							ž	
Interme clouring	14			0-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
Bit Distance Bit Distance Control Contro Control Control	15				-		<0.001	ma/ka		<0.001	ma/ka	<0.000001.%	Π	
10 10<	15		601-021-00-3 20)3-625-9	108-88-3		<0.001	тід/кд		<0.001	тід/кд	<0.000001 %		<lud< td=""></lud<>
Bit Diamatrial control in the second contro	16	۲	•				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
17 501-022-00-9 202-422-2[1] 96-47-6[1] c-0.002 mg/m c-0.002 mg/m c-0.00002 % c-0.00002 % c-0.00002 % c-0.000002 % c-0.0000002 % c-0.0000000 % c-0.000000 %)2-849-4	100-41-4								H	
18 secception of complex cyanides such as ferrogandes, processing and meanure caycyand e and those specified elsewhere in this Annex ; 006-007-06-5 1 20 -0.5 mgk 1.88 c0.942 mgk c0.000942% cLOD 0 pH pH pH 8 pH 2 0.000942% cLOD 0 naphthalane pH -0.1 mgkq c.0.1 mgkq c.0.1 mgkq c.0.0001% cLOD 21 accmaphthylene - c.0.1 mgkq c.0.1 mgkq c.0.1 mgkq c.0.0001% cLOD 22 accmaphthene - c.0.1 mgkq c.0.1 mgkq c.0.1 mgkq c.0.001% cLOD 23 attraceme - - c.0.1 mgkq c.0.1 mgkq c.0.1 mgkq c.0.1 mgkq c.0.1 mgkq c.0.1 mgkq c.0.1	17		601-022-00-9 20 20 20)3-396-5 [2])3-576-3 [3]	106-42-3 [2] 108-38-3 [3]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
19 PH PH 8 PH 4LOD 1 acenaphthyler	18	4	exception of complex ferricyanides and mer specified elsewhere in	cyanides such as rcuric oxycyanide	ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
19 10<													H	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	19	9	p		PH		8	рН		8	рН	8pH		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20			0.040 5	04.00.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $)2-049-5	91-20-3								H	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	21	9		05-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	22		acenaphthene				<01	ma/ka		<01	ma/ka	<0.00001 %		<i od<="" td=""></i>
23 201-695-5 B6-73-7 CO.1 mg/kg CO.00001 % CLOD 26 anthracene 204-371-1 120-12-7 CO.1 mg/kg CO.1 mg/kg CO.00001 % CLOD 26 fluoranthene 205-912-4 206-44-0 CO.1 mg/kg CO.1 mg/kg CO.00001 % CLOD 27 Pyrene 204-927-3 129-00-0 CO.1 mg/kg CO.1 mg/kg CO.01 mg/kg CO.01 mg/kg CO.01 mg/kg CO.01 mg/kg CO.01 mg/kg CO.01 mg/kg CO.0001 % CLOD 28 chrscne chrscne co.1 mg/kg CO.1 mg/kg			20)1-469-6	83-32-9									
24 phenanthrene <0.1 mg/kg <0.1 mg/kg <0.00001 % <lod< th=""> 25 anthracene 201-581-5 B5-01-8 <0.1</lod<>	23	۲		A 005 5	00.70.7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24 201-581-5 85-01-8 20.1 mg/kg 20.1 mg/kg 20.0001% 2000001% 200001% 20		-)1-695-5	86-73-7								H	
22 204-371-1 120-12-7 <0.1	24	9	·)1-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26 • fluoranthene 205-912-4 206-44-0 <0.1	25	8		4 074 4	400 40 7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
205-912-4 206-44-0 Control Control <td>26</td> <td></td> <td>l</td> <td>J4-37 I-1</td> <td>120-12-7</td> <td></td> <td>-0.1</td> <td>malka</td> <td></td> <td>-0.1</td> <td>malka</td> <td><0.00001.9/</td> <td>H</td> <td></td>	26		l	J4-37 I-1	120-12-7		-0.1	malka		-0.1	malka	<0.00001.9/	H	
21 204-927-3 129-00-0 <0.1	20		20	05-912-4	206-44-0		<0.1	шу/ку		<0.1	тту/ку	<0.00001 %		<lod< td=""></lod<>
28 benzo[a]anthracene	27	8					<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28 601-033-00-9 200-280-6 66-55-3 <0.1				04-927-3	129-00-0								H	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28			0-280-6	56-55-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0-200-0	30-33-3								H	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	29		-)5-923-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30		benzo[b]fluoranthene				<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
31 601-036-00-5 205-916-6 207-08-9 <0.1					205-99-2									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	31				207.09.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32 601-032-00-3 200-028-5 50-32-8 <0.1					207-08-9	+							$\left \right $	
33 • indeno[123-cd]pyrene <0.1	32				50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34 ²⁰⁵⁻⁸⁹³⁻² ¹⁹³⁻³⁹⁻⁵ ²⁰⁵⁻⁸⁸³⁻⁸ ¹⁹¹⁻²⁴⁻² ²⁰⁵⁻⁸⁸³⁻⁸ ¹⁹¹⁻²⁴⁻² ²⁰¹ ^{mg/kg} ²⁰¹ ^{mg/kg} ²⁰¹ ²⁰¹ ^{mg/kg} ²⁰¹ ^{mg/kg} ²⁰¹ ^{mg/kg} ²⁰¹ ^{mg/kg} ²⁰¹ ^{mg/kg} ²⁰⁰⁰¹ ^{mg/kg} ²⁰⁰⁰¹ ²⁰⁰⁰¹ ²⁰⁰⁰¹ ²⁰⁰⁰¹ ²⁰⁰⁰¹ ²⁰⁰⁰¹ ²⁰⁰⁰⁰¹	33	0	indeno[123-cd]pyrene	e			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34 601-041-00-2 200-181-8 53-70-3 <0.1					193-39-5	+							$\left \right $	
35 benzo[ghi]perylene <0.1 mg/kg <0.1 mg/kg <0.00001 % <lod< th=""> 36 sulfur { sulfur } 016-094-00-1 231-722-6 7704-34-9 <1</lod<>	34				53-70-3	$\left \right $	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33 33 34 10 <	25						-0.4			.0.4	m c // .	.0.00001.0/	H	1.00
016-094-00-1 231-722-6 7704-34-9			20)5-883-8	191-24-2		<0.1	тд/кд		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	36	4	sulfur {	31-722-6	7704-34-9		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
			pio-0300-1 Z3	011122-0	1107-04-3						Total:	0.0347 %	۲	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS06 1.70m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Name: WS06 1.70m Sample Depth:	17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
1.70 m Moisture content:	17 05 04 (Soil and stones other than those mentioned in 17 05 03)
11% (wet weight correction)	

Hazard properties

None identified

Determinands

Moisture content: 11% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	~	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		5.3	mg/kg	1.32	6.228 mg/kg	0.000623 %	\checkmark	
2	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		<0.4	mg/kg	3.22	<1.288 mg/kg	<0.000129 %		<lod< td=""></lod<>
3	-	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		0.15	mg/kg	1.142	0.153 mg/kg	0.0000153 %	~	
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		17	mg/kg	1.462	22.113 mg/kg	0.00221 %	~	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.5	mg/kg	1.923	<0.962 mg/kg	<0.0000962 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		20	mg/kg	1.126	20.041 mg/kg	0.002 %	~	
7		lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	15	mg/kg	1.56	20.824 mg/kg	0.00134 %	\checkmark	
8		mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1	mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
9	-	nickel { nickel chromate }		28	mg/kg	2.976	74.169 mg/kg	0.00742 %	~	
10	~	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		0.32	mg/kg	2.554	0.727 mg/kg	0.0000727 %	~	
11	4			56	mg/kg	2.774	138.263 mg/kg	0.0138 %	\checkmark	
12	0	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/kg	<0.001 %	ĺ	<lod< td=""></lod<>
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 [1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.000001 %		<lod< td=""></lod<>

HazWasteOnline[™] Report created by Howard Daley on 08 Sep 2020

#		Determinand				User entered	data	Conv. Factor	Compound conc.		Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP Note			1 dotor			Value	MC A	0000
14		benzene	000 750 7	74 40 0	_	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
			200-753-7	71-43-2	-								
15		toluene 601-021-00-3	203-625-9	108-88-3	_	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		ethylbenzene	203-023-3	100-00-3	-								
16	ľ		202-849-4	100-41-4	_	<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
		xylene											
17		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	ferricyanides and m specified elsewhere	ex cyanides such a nercuric oxycyanide	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5 рН			+								
19				PH	_	8.3	рН		8.3	рН	8.3 pH		
20		naphthalene		04.00.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			202-049-5	91-20-3									
21	9	acenaphthylene	205-917-1	208-96-8	_	<0.1	mg/kg		<0.1 m	mg/kg	<0.00001 %		<lod< td=""></lod<>
		acenaphthene		200 00 0	+								
22	ľ	•	201-469-6	83-32-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	8	fluorene				<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
20			201-695-5	86-73-7									200
24	۲	phenanthrene			_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	anthracene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			204-371-1	120-12-7	_								
26	8	fluoranthene	205-912-4	206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
07		pyrene				0.4			0.4		0.00004.0/		1.00
27			204-927-3	129-00-0		<0.1	mg/kg		<0.1	тід/кд	<0.00001 %		<lod< td=""></lod<>
28		benzo[a]anthracene	e			<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3									
29		chrysene		I		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-923-4	218-01-9	-								
30		benzo[b]fluoranthei 601-034-00-4	205-911-9	205-99-2	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
<u> </u>		benzo[k]fluoranther	1	<u></u>	+						0.00000		
31		601-036-00-5 205-916-6 207-08-9			-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[a]pyrene; be	1		1	<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
		601-032-00-3 200-028-5 50-32-8 indeno[123-cd]pyrene 205-893-2 193-39-5					mg/kg						
33	0					<0.1			<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>	
		dibenz[a,h]anthrace		190-09-0	+								
34		601-041-00-2 200-181-8 53-70-3				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
0.5		benzo[ghi]perylene									0.00004.00		1.00
35			205-883-8	191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36	4	sulfur { <mark>sulfur</mark> } 016-094-00-1	231-722-6	7704-34-9		1.5	mg/kg		1.335	mg/kg	0.000133 %	\checkmark	
		010-054-00-1	201-122-0	1104-34-3						Total:	0.0291 %	+	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS07 0.10m

Sample details

Sample Name:	LoW Code:	
WS07 0.10m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.10 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
30%		
(wet weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 30% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	~		,	1327-53-3		7.9	mg/kg	1.32	7.301 mg	kg 0.00073 %	∠	
2	~	boron { diboron trio	xide; boric oxide }	1303-86-2		0.4	mg/kg	3.22	0.902 mg	kg 0.0000902 %	~	
3	4	cadmium { cadmiur		1306-19-0		0.28	mg/kg	1.142	0.224 mg	kg 0.0000224 %	~	
4	4	oxide (worst case)	· · ·	{ • chromium(III)		19	mg/kg	1.462	19.439 mg	kg 0.00194 %	\checkmark	
5	4	chromium in chrom <mark>oxide</mark> }				<0.5	mg/kg	1.923	<0.962 mg	kg <0.0000962 %		<lod< th=""></lod<>
6	~			<mark>de</mark> } 1317-39-1		14	mg/kg	1.126	11.034 mg	kg 0.0011 %	~	
7	4		<mark>te</mark> } 231-846-0	7758-97-6	1	60	mg/kg	1.56	65.512 mg	kg 0.0042 %	\checkmark	
8	4			7487-94-7		<0.1	mg/kg	1.353	<0.135 mg	kg <0.0000135 %		<lod< th=""></lod<>
9	4		<mark>nate</mark> } 238-766-5	14721-18-7		14	mg/kg	2.976	29.167 mg	kg 0.00292 %	\checkmark	
10	4	selenium { seleniur cadmium sulphose in this Annex } 034-002-00-8				0.28	mg/kg	2.554	0.501 mg	kg 0.0000501 %	\checkmark	
11	4	zinc { zinc chromat	<mark>e</mark> } 236-878-9	13530-65-9		59	mg/kg	2.774	114.572 mg	kg 0.0115 %	~	
12	8	TPH (C6 to C40) p	• •	ТРН		<10	mg/kg		<10 mg	kg <0.001 %		<lod< th=""></lod<>
13		tert-butyl methyl eth 2-methoxy-2-methy 603-181-00-X	Ipropane	1634-04-4	-	<0.001	mg/kg		<0.001 mg	kg <0.0000001 %		<lod< th=""></lod<>

CDP Index number CAN Number CAS Number CAS Number Composition Composition <thcomposition< th=""> <thcomposition< th=""></thcomposition<></thcomposition<>			Determinand		te			Conv.			Classification	Applied	Conc. Not	
Here Description Descripion Description	#	CLP index number	EC Number	CAS Number	CLP Note	User entered	data		Compound c	onc.		AC App	Used	
15 Internet -0.001 mg/kg -0.001 mg/kg -0.001 mg/kg -0.0001 mg/kg -0.0000 mg/kg -0.00000002 % -0.0000002 % -0.0000002 % -0.00000002 % -0.00000002 % -0.00000000 % -0.00000000 % -0.00000000 % -0.00000000 % -0.00000000 % -0.00000000 % -0.00000000 % -0.00000000 % -0.00000000 % -0.00000000 % -0.00000000 % -0.00000000 % -0.00000000 % -0.0000000 % -0.0000000 % -0.00000000 % -0.00000000 % -0.00000000 % -0.00000000 % -0.0000000 % -0.0000000 % -0.0000000 % -0.0000000 % -0.0000000 % -0.0000000 % -0.0000000 % -0.0000000 % -0.0000000 % -0.0000000 % -0.0000000 % -0.0000000 % -0.00000000 % <td>14</td> <td></td> <td>200 752 7</td> <td>74 42 2</td> <td></td> <td><0.001</td> <td>mg/kg</td> <td></td> <td><0.001</td> <td>mg/kg</td> <td><0.000001 %</td> <td></td> <td><lod< td=""></lod<></td>	14		200 752 7	74 42 2		<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>	
Set 021-00-3 P00-88-3 c.0.00 mgkg c.0.00 mgkg c.0.00 mgkg c.0.000 mgkg			200-753-7	/1-43-2	-									
6 editylenzene exception deswhere in this Annex j 2005-007-00-5 900-422-2 [1] 2003-865 [2] [106-42.2 [2] 2003-876 3 [3] [106-383 [3] 215-535 7 [4] [1003-281 [3] 2003-876 3 [3] [106-383 [3] 215-535 7 [4] [1003-2007 [4] <0.002 mg/kg <0.002 mg/kg <0.0000002 % 4.0000002 % <4.0 4% exception of complex yrandes and moze specified elswhere in this Annex j 006-007-00-5 -0.002 mg/kg <0.002	15		202 625 0	100 00 2	_	<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>	
10 501-022-00-4 202-849-4 100-41-4 CUUID mg/kg CUUUD Mg/kg			203-625-9	108-88-3	-							H		
17 801-022-00-9 p02-422-21(1) p03-472-21(2) c0.002 mg/kg c0.002 mg/kg c0.0000002 % c0.00 18 4 coardies sch salts of hydrogen cyanide with the second of complex cyanides and mean coxycanide and hose second of complex cyanides and mean coxycanide and hose second of complex cyanides and mean coxycanide and hose second of complex cyanides and mean coxycanide and hose second of complex cyanides and mean coxycanide and hose second of complex cyanides and mean coxycanide and hose second of complex cyanides and mean coxycanide and hose second of complex cyanides and mean coxycanide and hose second of complex cyanides and mean coxycanide and hose second of complex cyanides and mean coxycanide and hose second of complex cyanides and mean coxycanide and hose second of complex cyanides and mean coxycanide and hose second of complex cyanides and mean coxycanide and hose second of complex cyanides and mean coxycanide and hose second of complex cyanides and mean coxycanide and hose second of complex cyanides	16		202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>	
18 scception of complex cyanides and three syscerified elsewhere in this Annex) -0.5 mg/kg 1.88 -0.942 mg/kg c0.000942% <.0.0 19 PH PH PH 6.7 PH 6.7<	17	601-022-00-9	203-396-5 [2] 203-576-3 [3]	106-42-3 [2] 108-38-3 [3]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>	
19 PH PH 6.7 PH 6.0 0.0		exception of completer ferricyanides and means specified elsewhere	ex cyanides such as hercuric oxycyanide	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>	
20 naphthalene 601-052-00-2 p02-049-5 p1-20-3 <0.1 mg/kg <0.1 mg/kg <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.000001 % <0.00001 % <t< td=""><td>19</td><td></td><td></td><td></td><td></td><td>6.7</td><td>pН</td><td></td><td>6.7</td><td>pН</td><td>6.7 pH</td><td></td><td></td></t<>	19					6.7	pН		6.7	pН	6.7 pH			
$ \begin{bmatrix} 01 - 052 \cdot 00^{-2} & 202 \cdot 049 \cdot 5 & 91 \cdot 20 \cdot 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	20	naphthalene		F11	+	<0.1	ma/ka		<0.1	ma/ka	<0.00001 %	Η	<lod< td=""></lod<>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	601-052-00-2	202-049-5	91-20-3		<0.1	ing/kg			iiig/kg	<0.00001 /0			
22 accamphibne p01-469-6 β3-32-9 <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.00001 % <1.0 23 fluorene p01-695-5 β6-73-7 <0.1	21 •		205 017 1	202 06 2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
22 201-469-6 B3-32-9 20.1 mg/kg 20.1 mg/kg 20.0001 % 200 23 fluorene 201-695-5 B6-73-7 20.1 mg/kg <0.1			205-917-1	208-90-8	_							H		
23 201-695-5 86-73-7 <0.1 mg/kg <0.1 mg/kg <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00000 % <0.000001 % <0.000000 % <0.000000 % <0.000000 %	22	· · .	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
Image: Contract of the second secon	23	fluorene				<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>	
24 201-581-5 B5-01-8 <0.1			201-695-5	86-73-7	-							H		
25 20-371-1 120-12-7 <0.1	24	1	201-581-5	85-01-8	_	<0.1	mg/кg		<0.1	mg/кg	<0.00001 %		<lod< td=""></lod<>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	25		204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
27	26		205-912-4	206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
28 01-033-00-9 200-280-6 56-55-3 <0.1	<td< td=""><td>27</td><td></td><td>204-927-3</td><td>129-00-0</td><td></td><td><0.1</td><td>mg/kg</td><td></td><td><0.1</td><td>mg/kg</td><td><0.00001 %</td><td></td><td><lod< td=""></lod<></td></td<>	27		204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28			56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
30 benzo[b]fluoranthene <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.000001 % <0.000001 % <0.0000000 % <0.0000000 % <0.0000000 % <0.0000000 % <0.0000000 % <0.000000000 % <0.00000000000000 % <0.00000000000000	29	chrysene		1		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
31 benzo[k]fluoranthene <0.1 mg/kg <0.1 mg/kg <0.00001 % <lo< th=""> 32 benzo[a]pyrene; benzo[def]chrysene <0.1 mg/kg <0.1</lo<>		benzo[b]fluoranther	ne			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
32 benzo[a]pyrene; benzo[def]chrysene <0.1	31	benzo[k]fluoranther	ne			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	Π	<lod< td=""></lod<>	
601-032-00-3 200-028-5 50-32-8 Image: Constraint of the constr	32	benzo[a]pyrene; be	nzo[def]chrysene	1		<0.1	mg/ka		<0.1	mg/ka	<0.00001 %	\square	<lod< td=""></lod<>	
33 205-893-2 193-39-5 <0.1				50-32-8	+							\mathbb{H}		
34	33		205-893-2	193-39-5	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
35 benzo[ghi]perylene <0.1 mg/kg <0.1 mg/kg <0.00001 % <lo< th=""> 36 sulfur { sulfur } 5.3 mg/kg 3.71 mg/kg 0.000371 % /</lo<>	34			53-70-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
35 10 <	-											H		
36 ≪ sulfur { sulfur { sulfur } 016-094-00-1 231-722-6 7704-34-9 5.3 mg/kg 3.71 mg/kg 0.000371 % √				191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
	36 🔏	sulfur { <mark>sulfur</mark> } 016-094-00-1	231-722-6	7704-34-9		5.3	mg/kg		3.71	mg/kg	0.000371 %	\checkmark		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS08 0.35m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	Classified as 17 05 04 in the List of Waste
---	---

Sample details

Sample Name: WS08 0.35m Sample Depth:		17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
0.35 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
11% (wet weight correction)		

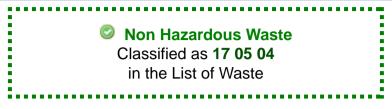
Hazard properties

None identified

Determinands

Moisture content: 11% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	~	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		6.7	mg/kg	1.32	7.873 mg/kg	0.000787 %	\checkmark	
2	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		<0.4	mg/kg	3.22	<1.288 mg/kg	<0.000129 %		<lod< td=""></lod<>
3	-	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		0.21	mg/kg	1.142	0.214 mg/kg	0.0000214 %	~	
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		18	mg/kg	1.462	23.414 mg/kg	0.00234 %	\checkmark	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.5	mg/kg	1.923	<0.962 mg/kg	<0.0000962 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		12	mg/kg	1.126	12.024 mg/kg	0.0012 %	~	
7		lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	61	mg/kg	1.56	84.682 mg/kg	0.00543 %	\checkmark	
8		mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1	mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
9	-	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		17	mg/kg	2.976	45.031 mg/kg	0.0045 %	\checkmark	
10	~	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		0.24	mg/kg	2.554	0.545 mg/kg	0.0000545 %	~	
11	4			60	mg/kg	2.774	148.139 mg/kg	0.0148 %	\checkmark	
12	0	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/kg	<0.001 %	ĺ	<lod< td=""></lod<>
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>


#			Determinand		Note	User entered	data	Conv. Factor	Compound co	nc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP Note						Value	MC A	USEU
14		benzene				<0.001	mg/kg		<0.001 r	ng/kg	<0.0000001 %		<lod< td=""></lod<>
	_		200-753-7	71-43-2								\square	
15		toluene 601-021-00-3	203-625-9	108-88-3		<0.001	mg/kg		<0.001 r	ng/kg	<0.000001 %		<lod< td=""></lod<>
		ethylbenzene	203-023-9	100-00-3									
16	•		202-849-4	100-41-4		<0.001	mg/kg		<0.001 r	ng/kg	<0.000001 %		<lod< td=""></lod<>
_		xylene		(
17			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002 r	ng/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	cyanides { salts of exception of complete ferricyanides and methods and methods and methods are associated elsewhere 006-007-00-5	ex cyanides such as hercuric oxycyanide	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942 r	ng/kg	<0.0000942 %		<lod< td=""></lod<>
19		pH				8.2	pН		8.2 p	σΗ	8.2 pH		
		naphthalene		PH	-							\vdash	
20		•	202-049-5	91-20-3		<0.1	mg/kg		<0.1 r	ng/kg	<0.00001 %		<lod< td=""></lod<>
24		acenaphthylene		[.0.1			-0.1	~~//~~	.0.00001.0/	H	
21			205-917-1	208-96-8		<0.1	mg/kg		<0.1 r	ng/kg	<0.00001 %		<lod< td=""></lod<>
22	0	acenaphthene	201-469-6	83-32-9	-	<0.1	mg/kg		<0.1 r	ng/kg	<0.00001 %		<lod< td=""></lod<>
		fluorene	201 100 0	00 02 0									
23			201-695-5	86-73-7	-	<0.1	mg/kg		<0.1 r	ng/kg	<0.00001 %		<lod< td=""></lod<>
24		phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1 r	ng/kg	<0.00001 %		<lod< td=""></lod<>
25	٥	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1 r	ng/kg	<0.00001 %		<lod< td=""></lod<>
26	۵	fluoranthene	205-912-4	206-44-0		<0.1	mg/kg		<0.1 r	ng/kg	<0.00001 %		<lod< td=""></lod<>
07		pyrene				0.4			0.1		0.00004.0/		1.05
27			204-927-3	129-00-0		<0.1	mg/kg		<0.1 r	ng/kg	<0.00001 %		<lod< td=""></lod<>
28		benzo[a]anthracene	Э	^		<0.1	mg/kg		<0.1 r	ng/kg	<0.00001 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3									
29		chrysene				<0.1	mg/kg		<0.1 r	ng/kg	<0.00001 %		<lod< td=""></lod<>
				218-01-9								\square	
30		benzo[b]fluoranther		205-99-2		<0.1	mg/kg		<0.1 r	ng/kg	<0.00001 %		<lod< td=""></lod<>
_	-	benzo[k]fluoranther		LUU-JJ-Z	\vdash							\vdash	
31				207-08-9	-	<0.1	mg/kg		<0.1 r	ng/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[a]pyrene; be	nzo[def]chrysene	50-32-8	_	<0.1	mg/kg		<0.1 r	ng/kg	<0.00001 %		<lod< td=""></lod<>
	-	indeno[123-cd]pyre		00-32-0	-							\vdash	
33			205-893-2	193-39-5		<0.1	mg/kg		<0.1 r	ng/kg	<0.00001 %		<lod< td=""></lod<>
		dibenz[a,h]anthrace			1	<u> </u>					0.00001.01	H	1.65
34		601-041-00-2 200-181-8 53-70-3		1	<0.1	mg/kg		<0.1 r	ng/kg	<0.00001 %		<lod< td=""></lod<>	
35				1	<0.1	mg/kg		<0.1 r	ng/kg	<0.00001 %	Π	<lod< td=""></lod<>	
55			205-883-8	191-24-2		<0.1	mg/kg		<u></u>	ng/kg	<0.0001 %		< LOD
36	4	sulfur {	231-722-6	7704-34-9		4.4	mg/kg		3.916 r	ng/kg	0.000392 %	\checkmark	
			-							Total:	0.031 %	\square	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS09 1.50m

Sample details

Sample Name:	LoW Code:	
WS09 1.50m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
15%		
(wet weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 15% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User ente	ered data	Conv. Factor	Compound	d conc.	Classification value	MC Applied	Conc. Not Used
1	8	рН		PH		8.4	рН		8.4	рН	8.4 pH		
		1								Total:	0%		

Key

- User supplied data
- Determinand defined or amended by HazWasteOnline (see Appendix A) 0

Classification of sample: WS10 0.10m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Depth:	 17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)
24% (wet weight correction)	

Hazard properties

None identified

Determinands

Moisture content: 24% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	~	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		5	mg/kg	1.32	5.017 mg/k	0.000502 %	\checkmark	
2	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		<0.4	mg/kg	3.22	<1.288 mg/k	<0.000129 %		<lod< td=""></lod<>
3	-	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		0.19	mg/kg	1.142	0.165 mg/k	0.0000165 %	~	
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		14	mg/kg	1.462	15.551 mg/k	g 0.00156 %	~	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.5	mg/kg	1.923	<0.962 mg/k	g <0.0000962 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		12	mg/kg	1.126	10.268 mg/k	0.00103 %	~	
7		lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	49	mg/kg	1.56	58.088 mg/k	0.00372 %	\checkmark	
8		mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1	mg/kg	1.353	<0.135 mg/k	<0.0000135 %		<lod< td=""></lod<>
9	-	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		13	mg/kg	2.976	29.405 mg/k	0.00294 %	\checkmark	
10	~	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		0.28	mg/kg	2.554	0.543 mg/k	g 0.0000543 %	~	
11	4			61	mg/kg	2.774	128.609 mg/k	g 0.0129 %	\checkmark	
12	0	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/k	g <0.001 %		<lod< td=""></lod<>
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001 mg/k	g <0.0000001 %		<lod< td=""></lod<>

			Determinand		e							ied	
#		CLP index number	EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound co	onc.	Classification value	Ap	Conc. Not Used
14		benzene			<u>ਹ</u>	-0.001			.0.001		<0.000001 %	MC	
14		601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
15		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
13		601-021-00-3	203-625-9	108-88-3		<0.001	шу/ку		<0.001	шу/ку	<0.0000001 /8		LOD
16		ethylbenzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
		xylene											
17			202-422-2 [1]	95-47-6 [1]		<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
.,			203-396-5 [2] 203-576-3 [3]	106-42-3 [2] 108-38-3 [3]		<0.002	iiig/itg		<0.002 I	ing/itg	<0.0000002 /0		LOD
			215-535-7 [4]	1330-20-7 [4]									
18	4	cyanides { salts of exception of complete ferricyanides and managements of the salts of the salt	ex cyanides such as hercuric oxycyanide	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< th=""></lod<>
		006-007-00-5											
19		рН				6.5	pН		6.5	pН	6.5 pH		
13				PH		0.5	pri		0.5	pri	0.0 pm		
20		naphthalene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			202-049-5	91-20-3						0 0		H	
21	۲	acenaphthylene	I	1		<0.1 mg/kg			<0.1 I	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-917-1	208-96-8	-							\square	
22	۲	acenaphthene	004 400 0			<0.1 mg/kg			<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	201-469-6 83-32-9		-							\vdash			
23	۲	fluorene	201 605 5	00 70 7	_	<0.1	mg/kg		<0.1 I	mg/kg	<0.00001 %		<lod< td=""></lod<>
			201-695-5	86-73-7	+							H	
24	8	phenanthrene	201-581-5	85-01-8	-	<0.1	mg/kg		<0.1 I	mg/kg	<0.00001 %		<lod< td=""></lod<>
		anthracene	201-301-3	05-01-0	-							H	
25			204-371-1	120-12-7	-	<0.1	mg/kg		<0.1 I	mg/kg	<0.00001 %		<lod< td=""></lod<>
		fluoranthene				0.54			0.44		0.0000.11.0/		
26			205-912-4	206-44-0	-	0.54	mg/kg		0.41 1	mg/kg	0.000041 %	\checkmark	
27		pyrene				0.46	malka		0.35	ma/ka	0.000035 %	,	
21			204-927-3	129-00-0		0.40	mg/kg		0.55	mg/kg	0.000033 /8	\checkmark	
28		benzo[a]anthracene	Э			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20		601-033-00-9	200-280-6	56-55-3			ing/kg			ing/ng			~L0D
29		chrysene				<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
		í .		218-01-9									
30		benzo[b]fluoranther				<0.1	mg/kg		<0.1 I	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-911-9	205-99-2	-							\vdash	
31		benzo[k]fluoranther		007.00.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-916-6	207-08-9	-							\vdash	
32		benzo[a]pyrene; be 601-032-00-3		50-32-8	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	-	indeno[123-cd]pyre		50-52-6	-							H	
33			205-893-2	193-39-5	-	<0.1	mg/kg		<0.1 I	mg/kg	<0.00001 %		<lod< td=""></lod<>
		dibenz[a,h]anthrace		100 00 0								H	
34			200-181-8	53-70-3	1	<0.1 mg/kg			<0.1 I	mg/kg	<0.00001 %		<lod< td=""></lod<>
05		benzo[ghi]perylene		۸	1	<u> </u>			0.1		0.00001.0/	Ħ	1.00
35			205-883-8	191-24-2	1	<0.1	mg/kg		<0.1 I	ng/kg	<0.00001 %		<lod< td=""></lod<>
36	4	sulfur { <mark>sulfur</mark> }				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		016-094-00-1	231-722-6	7704-34-9	1		99					μ	
										Total:	0.0243 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS11 2.50m

Sample details

Sample Name: WS11 2.50m Sample Depth: 2.50 m Moisture content: 10% (wet weight correction)	LoW Code: Chapter: Entry:	17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)
--	---------------------------------	--

Hazard properties

None identified

Determinands

Moisture content: 10% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User ente	ered data	Conv. Factor	Compound	d conc.	Classification value	MC Applied	Conc. Not Used
1	8	рН		PH		8.4	рН		8.4	рН	8.4 pH		
		1								Total:	0%		

Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A) 0

Classification of sample: WS12 1.00m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: WS12 1.00m	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
10%		
(wet weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 10% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	рН		PH		8.3 pH		8.3	pН	8.3 pH		
				1					Total:	0%		

Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Appendix A: Classifier defined and non CLP determinands

• pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

• chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462 Description/Comments: Data from C&L Inventory Database Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806 Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4 H332, Acute Tox. 4 H302, Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Resp. Sens. 1 H334, Skin Sens. 1 H317, Repr. 1B H360FD, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Flam. Liq. 3 H226, Asp. Tox. 1 H304, STOT RE 2 H373, Muta. 1B H340, Carc. 1B H350, Repr. 2 H361d, Aquatic Chronic 2 H411

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4 Description/Comments: Data source: Commission Regulation (EU) No 605/2014 – 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP6) Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s): 03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5 Description/Comments: Conversion factor based on a worst case compound: sodium cyanide Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP1) Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s):

14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4 H302, Acute Tox. 1 H330, Acute Tox. 1 H310, Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410 , Aquatic Chronic 2 H411

[•] fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

Report created by Howard Daley on 08 Sep 2020

[•] phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4 H302 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Carc. 2 H351 , Skin Sens. 1 H317 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410 , Skin Irrit. 2 H315

^a anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315 , Skin Sens. 1 H317 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4 H302, Aguatic Acute 1 H400, Aguatic Chronic 1 H410

• pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2 H315, Eye Irrit. 2 H319, STOT SE 3 H335, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

boron {diboron trioxide; boric oxide}

Reasonable case CLP species based on hazard statements/ molecular weight, physical form and low solubility. Industrial sources include: fluxing agent for glass/enamels; additive for fibre optics, borosilicate glass (edit as required)

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. (edit as required) Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history (edit as required)

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass (edit as required)

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments (edit as required)

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

HazWasteOnline[™]

Report created by Howard Daley on 08 Sep 2020

lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil. (edit as required)

zinc {zinc chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case as complex cyanides and those specified elsewhere in the annex are not likely to be present in this soil: [Note conversion factor based on a worst case compound: sodium cyanide] (edit as required)

sulfur {sulfur}

Elemental sulfur most likely to be worst case scenario hazardous

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018 HazWasteOnline Classification Engine Version: 2020.241.4455.8692 (28 Aug 2020) HazWasteOnline Database: 2020.241.4455.8692 (28 Aug 2020)

This classification utilises the following guidance and legislation: WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 14th ATP - Regulation (EU) 2020/217 of 4 October 2019 POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004 1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010 2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010

Waste Classification Report

Job name			
Argoed High School			
Description/Comme	ents		
Project			
C3250 Argoed High Schoo	DI		
Site			
C3250 Argoed High Schoo	bl		
Related Documents	i		
# Name		Description	
1 HWOL_20-16651-	20200908 091840.hwol	hwol file used to create the Job	
Waste Stream Temp	plate		
Example waste stream ter	nplate for contaminated soils		
Classified by			
Name:	Company:	HazWasteOnline™ Training Record:	
Howard Daley Date: 08 Sep 2020 13:20 GMT Telephone: 01773 535555	HSP Consulting Engineers Limited Lawrence House 4 Meadowbank W Eastwood 4 Meadowbank Way, Eastwood Nottingham NG16 3SB		Date 11 Feb 2020 12 Feb 2020

Report

Created by: Howard Daley Created date: 08 Sep 2020 13:20 GMT

Job summary

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	WS01 0.20m	0.20	Non Hazardous		2
2	WS02 1.00m	1.00	Non Hazardous		5
3	WS04 1.00m	1.00	Non Hazardous		8
4	WS05 0.60m	0.60	Non Hazardous		9

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	10
Appendix B: Rationale for selection of metal species	11
Appendix C: Version	12

Classification of sample: WS01 0.20m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	in the List of Waste	
---	----------------------	--

Sample details

Sample Name: WS01 0.20m		17: Construction and Demolition Wastes (including excavated soil
Sample Depth: 0.20 m		from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:	Entry.	03)
13% (wet weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 13% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered c	lata	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	~	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		5.9 r	ng/kg	1.32	6.777 mg/kg	0.000678 %	\checkmark	
2	~	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		0.48 r	ng/kg	3.22	1.345 mg/kg	0.000134 %	\checkmark	
3	-	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		<0.1 r	ng/kg	1.142	<0.114 mg/kg	<0.0000114 %		<lod< td=""></lod<>
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		19 r	ng/kg	1.462	24.16 mg/kg	0.00242 %	~	
5	~	chromium in chromium(VI) compounds {		<0.5 r	ng/kg	1.923	<0.962 mg/kg	<0.0000962 %		<lod< td=""></lod<>
6		copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		6.8 r	ng/kg	1.126	6.661 mg/kg	0.000666 %	~	
7		lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	23 r	ng/kg	1.56	31.212 mg/kg	0.002 %	\checkmark	
8	~	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1 r	ng/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
9	-	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		11 r	ng/kg	2.976	28.483 mg/kg	0.00285 %	\checkmark	
10	~			<0.2 r	ng/kg	2.554	<0.511 mg/kg	<0.0000511 %		<lod< td=""></lod<>
11	4	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		32 r	ng/kg	2.774	77.232 mg/kg	0.00772 %	~	
12	8	TPH (C6 to C40) petroleum group		<10 r	ng/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001 r	ng/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>

#			Determinand		CLP Note	User entered	data	Conv. Factor	Compound co	onc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLPI			1 actor			Value	MC A	USEU
14		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
			200-753-7	71-43-2	-							-	
15		toluene 601-021-00-3	203-625-9	108-88-3	-	<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
		ethylbenzene	200 020 0	100 00 0									
16	ľ		202-849-4	100-41-4	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
17			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	_	<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
18	4	cyanides { Salts of exception of completer ferricyanides and means of the specified elsewhere 006-007-00-5	ex cyanides such as ercuric oxycyanide	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
19	0	pH		PH		8.1	pН		8.1	pН	8.1 pH		
20		naphthalene		p	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20		601-052-00-2	202-049-5	91-20-3		<0.1	iiig/kg			iiig/kg	<0.00001 //		
21	0	acenaphthylene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-917-1	208-96-8	-								
22	8	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	8	fluorene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
-		phenanthrene	201-695-5	86-73-7	-								
24	Θ		201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	anthracene	204-371-1	120-12-7	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	fluoranthene	205-912-4	206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27	0	pyrene	004.007.0	400.00.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[a]anthracene	204-927-3	129-00-0	-								
28		•		56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
29		chrysene				<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
				218-01-9	1								
30		benzo[b]fluoranther 601-034-00-4	ne 205-911-9	205-99-2	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31		benzo[k]fluoranther	ne			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-036-00-5 benzo[a]pyrene; be		207-08-9	$\left \right $								
32				50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33	0	indeno[123-cd]pyre	ne 205-893-2	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		dibenz[a,h]anthrace				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
				53-70-3						5 5			
35	8	benzo[ghi]perylene	205-883-8	191-24-2	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36	4	sulfur { <mark>sulfur</mark> }	231-722-6	7704-34-9		1.3	mg/kg		1.131	mg/kg	0.000113 %	~	
		010-094-00-1	231-122-0	1104-04-9	1					Total:	0.018 %	\vdash	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
۲	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS02 1.00m

Sample details

Sample Name:	LoW Code:	
WS02 1.00m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
11%		
(wet weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 11% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound conc	;.	Classification value	MC Applied	Conc. Not Used
1	4		,	1327-53-3		8.7	mg/kg	1.32	10.223 mg	g/kg	0.00102 %	<	
2	~	boron { diboron trio	xide; boric oxide }	1303-86-2	-	<0.4	mg/kg	3.22	<1.288 mg	g/kg	<0.000129 %		<lod< th=""></lod<>
3	4	cadmium { cadmiur		1306-19-0		<0.1	mg/kg	1.142	<0.114 mg	g/kg	<0.0000114 %		<lod< th=""></lod<>
4	4					26	mg/kg	1.462	33.82 mį	g/kg	0.00338 %	~	
5	4	chromium in chrom <mark>oxide</mark> }				<0.5	mg/kg	1.923	<0.962 mg	g/kg	<0.0000962 %		<lod< th=""></lod<>
6	~	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 1215-270-7 1317-39-1			24	mg/kg	1.126	24.049 mg	g/kg	0.0024 %	~		
7	4	<pre>lead { lead chromate } 082-004-00-2</pre>			1	14	mg/kg	1.56	19.435 mg	g/kg	0.00125 %	\checkmark	
8	4			7487-94-7		<0.1	mg/kg	1.353	<0.135 mg	g/kg	<0.0000135 %		<lod< td=""></lod<>
9	~		<mark>nate</mark> } 238-766-5	14721-18-7	_	38	mg/kg	2.976	100.657 mg	g/kg	0.0101 %	\checkmark	
10	~	selenium { seleniur cadmium sulphose in this Annex 034-002-00-8			_	<0.2	mg/kg	2.554	<0.511 mg	g/kg	<0.0000511 %		<lod< th=""></lod<>
11	4	zinc { zinc chromat	<mark>e</mark> } 236-878-9	13530-65-9		51	mg/kg	2.774	125.919 m(g/kg	0.0126 %	~	
12	8	TPH (C6 to C40) p	• •	ТРН		<10	mg/kg		<10 mg	g/kg	<0.001 %		<lod< th=""></lod<>
13		tert-butyl methyl eth 2-methoxy-2-methy 603-181-00-X	Ipropane	1634-04-4		<0.001	mg/kg		<0.001 mỹ	g/kg	<0.0000001 %		<lod< th=""></lod<>

	T	oonoan											
#			Determinand EC Number	CAS Number	P Note	User entered	data	Conv. Factor	Compound c	onc.	Classification value	C Applied	Conc. Not Used
				CAS Number	CLP							MC	
14		benzene 601-020-00-8 200)-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
15	-	toluene		-		<0.001	ma/ka		<0.001	ma/ka	<0.0000001 %		<lod< td=""></lod<>
15		601-021-00-3 203	8-625-9	108-88-3		<0.001	mg/kg		<0.001	тід/кд	<0.000001 %		<lod< td=""></lod<>
16 •	- 1	ethylbenzene				<0.001	mg/kg		<0.001	ma/ka	<0.0000001 %		<lod< td=""></lod<>
			2-849-4	100-41-4			5 5						-
17		203 203	3-396-5 [2] 3-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18		cyanides { ^a salts of h exception of complex c ferricyanides and merc specified elsewhere in	cyanides such as curic oxycyanide	ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
40 9		006-007-00-5 рН					-		0.4		0.4 -11		
19 "		-		PH		8.4	рН		8.4	рН	8.4 pH		
20		naphthalene	040 5	04.00.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-052-00-2 202 acenaphthylene	2-049-5	91-20-3									
21			5-917-1	208-96-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22 @		acenaphthene	-			-0.1	malka		-0.1	malka	<0.00001 %		<lod< td=""></lod<>
22	201-469-6 83-32-9			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud< td=""></lud<>		
23 @	Ð	fluorene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		J	-695-5	86-73-7									
24 『	•	phenanthrene 201	-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	•	anthracene		120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	fluoranthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		l	5-912-4	206-44-0									
27 『		pyrene	-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[a]anthracene	521 5	123 00 0									
28			-280-6	56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
29	Ì	chrysene				<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			5-923-4	218-01-9									
30		benzo[b]fluoranthene	044.0	005 00 0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	-	601-034-00-4 205 benzo[k]fluoranthene	5-911-9	205-99-2									
31		••	5-916-6	207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	-	benzo[a]pyrene; benzo	1			0.1			<u> </u>		0.00001.0/		1.00
32				50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33 『		indeno[123-cd]pyrene	5-893-2	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24		dibenz[a,h]anthracene				-0.4			.0.1	m c // .	.0.00004.0/		1.00
34	4 601-041-00-2 200-181-8 53-70-3			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>		
35 @	0	benzo[ghi]perylene				<0.1	mg/kg		<0.1	mg/ka	<0.00001 %		<lod< td=""></lod<>
			5-883-8	191-24-2			0 0						
36 🛋	3	sulfur { <mark>sulfur</mark> } 016-094-00-1 231	-722-6	7704-34-9		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·							Total:	0.0324 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS04 1.00m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Name:	LoW Code:	
WS04 1.00m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
16%		
(wet weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 16% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	۵	pН		PH		8.2 pH		8.2	pН	8.2 pH		
				1				·	Total:	0%		

Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Classification of sample: WS05 0.60m

Sample details

Sample Name: WS05 0.60m Sample Depth: 0.60 m Moisture content: 7.6%	LoW Code: Chapter: Entry:	17: Construction and Demolition Wastes (including excavated soi from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)
7.6% (wet weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 7.6% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User ent	ered data	Conv. Factor	Compound	d conc.	Classification value	AC Applied	Conc. Not Used
1	0	рН		PH	-	8.5	pН		8.5	pН	8.5 pH		
		11		<u>r</u> · ·	1					Total:	0%		

Key

- User supplied data
- Determinand defined or amended by HazWasteOnline (see Appendix A) 0

Report created by Howard Daley on 08 Sep 2020

Appendix A: Classifier defined and non CLP determinands

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

• chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462 Description/Comments: Data from C&L Inventory Database Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806 Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4 H332, Acute Tox. 4 H302, Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Resp. Sens. 1 H334, Skin Sens. 1 H317, Repr. 1B H360FD, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Flam. Liq. 3 H226, Asp. Tox. 1 H304, STOT RE 2 H373, Muta. 1B H340, Carc. 1B H350, Repr. 2 H361d, Aquatic Chronic 2 H411

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4 Description/Comments: Data source: Commission Regulation (EU) No 605/2014 – 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP6) Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s): 03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP1) Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s):

14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4 H302, Acute Tox. 1 H330, Acute Tox. 1 H310, Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Aquatic Acute 1 H400, Aquatic Chronic 1 H410, Aquatic Chronic 2 H411

[®] fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

Report created by Howard Daley on 08 Sep 2020

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8) Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Acute Tox. 4 H302 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Carc. 2 H351 , Skin Sens. 1 H317 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410, Skin Irrit. 2 H315 ^{anthracene} (EC Number: 204-371-1, CAS Number: 120-12-7) Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eve Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Skin Sens. 1 H317, Aquatic Acute 1 H400, Aquatic Chronic 1 H410 • fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0) Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4 H302, Aquatic Acute 1 H400, Aquatic Chronic 1 H410 • pyrene (EC Number: 204-927-3, CAS Number: 129-00-0) Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2 H315, Eve Irrit. 2 H319, STOT SE 3 H335, Aquatic Acute 1 H400, Aquatic Chronic 1 H410 • indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5) Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventorv-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

boron {diboron trioxide; boric oxide}

Reasonable case CLP species based on hazard statements/ molecular weight, physical form and low solubility. Industrial sources include: fluxing agent for glass/enamels; additive for fibre optics, borosilicate glass (edit as required)

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. (edit as required) Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history (edit as required)

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass (edit as required)

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments (edit as required)

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

HazWasteOnline[™]

Report created by Howard Daley on 08 Sep 2020

lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

selenium {selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil. (edit as required)

zinc {zinc chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case as complex cyanides and those specified elsewhere in the annex are not likely to be present in this soil: [Note conversion factor based on a worst case compound: sodium cyanide] (edit as required)

sulfur {sulfur}

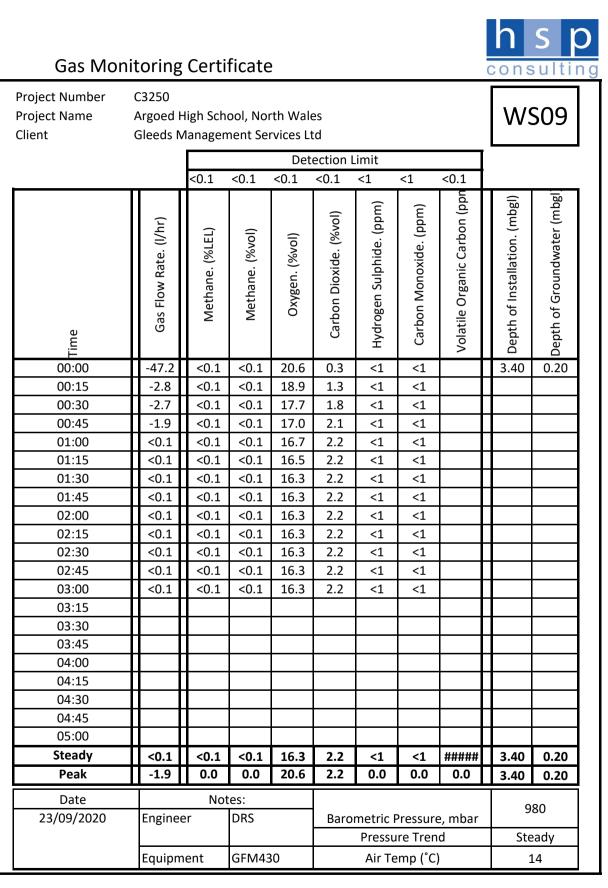
Elemental sulfur most likely to be worst case scenario hazardous

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018 HazWasteOnline Classification Engine Version: 2020.241.4455.8692 (28 Aug 2020) HazWasteOnline Database: 2020.241.4455.8692 (28 Aug 2020)

This classification utilises the following guidance and legislation: WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 14th ATP - Regulation (EU) 2020/217 of 4 October 2019 POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004 1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010 2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010

Appendix VIII

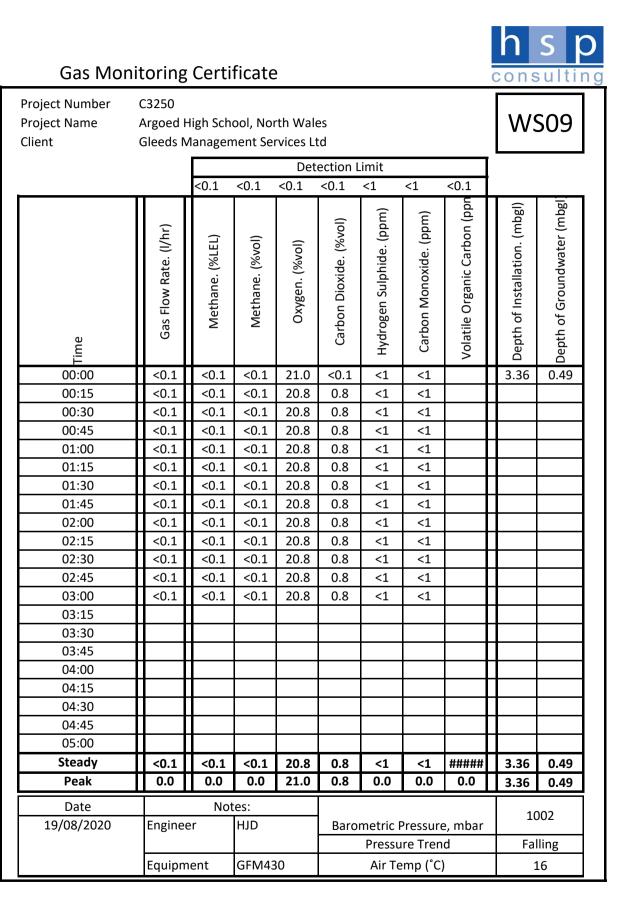


Project Name	C3250 Argoed H Gleeds M	-							W	506
				Det	ection l	Limit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (l/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppm)	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)
00:00	<0.1	<0.1	<0.1	20.7	<0.1	<1	<1		2.07	1.80
00:15	<0.1	<0.1	<0.1	13.2	2.4	1	<1			
00:30	<0.1	<0.1	<0.1	14.1	1.7	<1	<1			
00:45	<0.1	<0.1	<0.1	15.9	1.2	1	1			
01:00	<0.1	<0.1	<0.1	16.7	1.1	<1	1			
01:15	<0.1	<0.1	<0.1	15.0	1.7	<1	1			
01:30	<0.1	<0.1	<0.1	16.7	1.7	<1	<1			
01:45	<0.1	<0.1	<0.1	16.9	1.7	<1	<1			
02:00	<0.1	<0.1	<0.1	15.7	1.6	<1	<1			
02:15	<0.1	<0.1	<0.1	16.7	1.4	1	<1			
02:30	<0.1	<0.1	<0.1	17.2	1.0	1	1			
02:45	<0.1	<0.1	<0.1	17.7	0.9	<1	<1			
03:00	<0.1	<0.1	<0.1	18.2	0.8	<1	<1			
03:15	<0.1	<0.1	<0.1	18.8	0.7	<1	<1			
03:30	<0.1	<0.1	<0.1	19.0	0.7	<1	<1			
03:45	<0.1	<0.1	<0.1	19.1	0.6	<1	<1			
04:00	<0.1	<0.1	<0.1	19.2	0.6	<1	<1			
04:15	<0.1	<0.1	<0.1	19.3	0.5	<1	<1			
04:30	<0.1	<0.1	<0.1	19.4	0.5	<1	<1			
04:45	<0.1	<0.1	<0.1	19.4	0.5	<1	<1			
05:00	<0.1	<0.1	<0.1	19.4	0.5	<1	<1			
Steady	<0.1	<0.1	<0.1	19.4	0.5	<1	<1	#####	2.07	1.80
Peak	0.0	0.0	0.0	20.7	2.4	1.0	1.0	0.0	2.07	1.80
Date 23/09/2020	Enginee	Notes: er DRS			Barometric Pressure, mbar					80
	Equipm	ent	GFM43	30			ire Tren emp (°C		-	eady L4

Project Number Project Name Client	C3250 Argoed H Gleeds N	-							W	S08
				Det	ection l	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppm)	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)
00:00	<0.1	<0.1	<0.1	20.7	<0.1	<1	<1		2.81	1.13
00:15	<0.1	<0.1	<0.1	20.8	0.2	<1	<1			
00:30	<0.1	<0.1	<0.1	20.7	0.2	<1	<1			
00:45	<0.1	<0.1	<0.1	20.7	0.2	<1	<1			
01:00	<0.1	<0.1	<0.1	20.8	0.1	<1	<1			
01:15	<0.1	<0.1	<0.1	20.8	0.1	<1	<1			
01:30	<0.1	<0.1	<0.1	20.8	0.1	<1	<1			
01:45	<0.1	<0.1	<0.1	20.8	0.1	<1	<1			
02:00	<0.1	<0.1	<0.1	20.8	0.1	<1	<1			
02:15	<0.1	<0.1	< 0.1	20.8	0.1	<1	<1			
02:30	<0.1	<0.1	<0.1	20.8	0.1	<1	<1			
02:45	<0.1	<0.1	< 0.1	20.8	0.1	<1	<1			
03:00	<0.1	<0.1	<0.1	20.8	0.1	<1	<1			
03:15										
03:30	╂╴╴╂									
03:45	╢╴╢									
04:00 04:15	╢╴╢									
04:15	╢╢									
04:30	╢╢					<u> </u>		┤──┨		├ ───┨
05:00	╫╶┨							┟──┟		├┨
Steady	<0.1	<0.1	<0.1	20.8	0.1	<1	<1	#####	2.81	1.13
Peak	0.0	0.0	0.0	20.8	0.2	0.0	0.0	0.0	2.81	1.13
Date 23/09/2020				Notes: er DRS			Barometric Pressure, mbar Pressure Trend			
	Equipm	ent	GFM43	30			emp (°C		1	eady 14

Project Number Project Name Client	C3250 Argoed H Gleeds N	-							W	506
				Det	ection l	limit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppm)	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)
00:00	-7.2	<0.1	<0.1	10.5	0.2	<1	<1		2.10	0.40
00:15	-24.2	<0.1	<0.1	8.6	3.0	<1	1			
00:30	-30.7	<0.1	<0.1	7.7	3.1	2	3			
00:45	-37.8	<0.1	<0.1	7.6	3.1	3	1			
01:00	-40.8	<0.1	<0.1	7.6	3.1	2	1			
01:15	-44.6	<0.1	<0.1	7.5	3.1	2	1			
01:30	-42.7	<0.1	<0.1	7.4	3.1	2	1			
01:45	-48.1	<0.1	<0.1	7.4	3.1	<1	1			
02:00	-48.1		G	ias kit st	arted t	o strugg				
02:15	-48.1									
02:30	-48.1									
02:45	-48.1									
03:00	-48.1									
03:15										
03:30										
03:45		 			ļ					
04:00					ļ					
04:15										
04:30										
04:45										
05:00										
Steady		tarted t		7.4	3.1	<1	1.0	#####	2.10	0.40
Peak	-7.2	0.0	0.0	10.5	3.1	3.0	3.0	0.0	2.10	0.40
Date 07.10.2020	Enginee	Notes: er DRS			Baro	metric l	9	92		
	-					Pressu	ire Tren	ıd	Riisng	
	Equipm	ent	GFM43	30		Air Te	emp (°C)		L3

Project Number Project Name Client	C3250 Argoed H Gleeds N	-							W	S08	
				Det	ection l	imit					
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1			
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppm)	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)	
00:00	0.0	<0.1	<0.1	20.6	<0.1	<1	<1		2.85	0.22	
00:15	0.0	<0.1	<0.1	20.7	1.2	<1	<1				
00:30	0.0	<0.1	<0.1	19.8	0.9	2	<1				
00:45	0.0	<0.1	<0.1	20.2	0.6	1	<1				
01:00	0.0	<0.1	<0.1	20.4	0.5	2	<1				
01:15	0.0	<0.1	<0.1	20.6	0.3	1	<1				
01:30	0.0	<0.1	<0.1	20.7	0.2	2	<1				
01:45	0.0	<0.1	<0.1	20.8	0.1	2	<1				
02:00	0.0	<0.1	<0.1	20.8	0.1	1	<1				
02:15	0.0	<0.1	<0.1	20.8	<0.1	2	<1				
02:30	0.0	<0.1	<0.1	20.8	<0.1	1	<1		_		
02:45	0.0	<0.1	<0.1	20.8	<0.1	1	<1				
03:00	0.0	<0.1	<0.1	20.8	<0.1	1	<1				
03:15 03:30											
03:45	╂╴╴┨										
04:00											
04:15	╢╢]	
04:30]	
04:45	╢╢							┼──╂]	
05:00	╢╢							┼──╂]	
Steady	0.0	<0.1	<0.1	20.8	<0.1	1.0	<1	#####	2.85	0.22	
Peak	0.0	0.0	0.0	20.8	1.2	2.0	0.0	0.0	2.85	0.22	
Date 07.10.2020	Engine	Notes: er DRS			Barometric Pressure, mbar Pressure Trend				992 Riisng		
	Equipm	nent	GFM43	30		Air Te	emp (°C)		13	


Project Name	C3250 Argoed H Gleeds N	-							W	509
				Det	ection L	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (l/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)
00:00			BH	flooded	unable	to mor	nitor		3.46	0.00
00:15										
00:30										
00:45										
01:00										
01:15										
01:30										
01:45										
02:00										
02:15										
02:30										
02:45										
03:00										
03:15										
03:30								└───┨		
03:45										
04:00	+							╞───┠		
04:15	+							╞───╂		
04:30									$\left \right $	
04:45 05:00										
Steady	######	l unable	#####	#####	#####	#####	#####	#####	3.46	0.00
Peak	0.0	0.0	<i>*****</i> 0.0	<i>*****</i> 0.0	##### 0.0	<i>*****</i>	<i>#####</i> 0.0	0.0	3.46	0.00
Date 07.10.2020	Enginee	Not				metric F	992			
	3					Pressu	Riisng			
	Equipm	ent	GFM43	30			mp (°C)			.3

Project Name	C3250 Argoed H Gleeds N	-							W:	S06		
				Det	ection l	imit						
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1	n.			
Time	Gas Flow Rate. (l/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppm)	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)		
00:00	<0.1	< 0.1	<0.1	20.9	<0.1	<1	<1		2.11	1.68		
00:15	<0.1	<0.1	<0.1	13.5	2.1	<1	<1					
00:30	<0.1	<0.1	<0.1	13.3	2.1	<1	<1					
00:45	<0.1	<0.1	<0.1	13.2	2.1	<1	<1					
01:00	<0.1	<0.1	<0.1	13.2	2.1	<1	<1					
01:15	<0.1	< 0.1	<0.1	13.2	2.1	<1	<1					
01:30	<0.1	<0.1	<0.1	13.2	2.1	<1	<1					
01:45	<0.1	<0.1	<0.1	13.2	2.1	<1	<1					
02:00	<0.1	<0.1	<0.1	13.2	2.1	<1	<1					
02:15	<0.1	<0.1	<0.1	13.2	2.1	<1	<1					
02:30	<0.1	<0.1	<0.1	13.2	2.1	<1	<1					
02:45	<0.1	<0.1	<0.1	13.2	2.1	<1	<1					
03:00	<0.1	<0.1	<0.1	13.2	2.1	<1	<1					
03:15												
03:30												
03:45												
04:00												
04:15												
04:30												
04:45												
05:00												
Steady	<0.1	<0.1	<0.1	13.2	2.1	<1	<1	#####	2.11	1.68		
Peak	0.0	0.0	0.0	20.9	2.1	0.0	0.0	0.0	2.11	1.68		
Date 19/08/2020						metric	10	002				
						Pressu	ure Tren	d	Falling			
	Equipm	ent	GFM43	30		Air Te	emp (°C)	ŕ	16		

Project Number Project Name Client	C3250 Argoed H Gleeds N	-		W	508					
				Det	ection l	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppm)	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)
00:00	<0.1	<0.1	<0.1	21.0	<0.1	<1	<1		2.74	2.34
00:15	<0.1	<0.1	<0.1	19.9	0.9	<1	<1			
00:30	<0.1	<0.1	<0.1	19.7	1.0	<1	<1			
00:45	<0.1	<0.1	<0.1	19.7	1.0	<1	<1			
01:00	<0.1	<0.1	<0.1	19.7	1.0	<1	<1			
01:15	<0.1	<0.1	<0.1	19.7	1.0	<1	<1			
01:30	<0.1	<0.1	<0.1	19.7	1.0	<1	<1			
01:45	<0.1	<0.1	<0.1	19.7	1.0	<1	<1			
02:00	<0.1	<0.1	<0.1	19.7	1.0	<1	<1			
02:15	<0.1	<0.1	<0.1	19.7	1.0	<1	<1			
02:30	<0.1	<0.1	<0.1	19.7	1.0	<1	<1			
02:45	<0.1	<0.1	<0.1	19.7	1.0	<1	<1			
03:00	<0.1	<0.1	<0.1	19.7	1.0	<1	<1			
03:15										
03:30										
03:45	╢┤					<u> </u>		┤──┨	┨───┤	
04:00	╢─┤							┟──┨		
04:15	╢┤									
04:30	╢─┤							├		
04:45 05:00	╢╢									
Steady	<0.1	<0.1	<0.1	10.7	1.0	<1	-1	#####	2.74	2.34
Peak	0.0			< <u>1</u> 0.0	<1 0.0	0.0	2.74 2.74	2.34		
Date 19/08/2020	Enginee	Notes: gineer HJD		Barometric Pressure, mbar Pressure Trend				r 1002 Falling		
	Equipm	ent	GFM43	30			emp (°C		1	16

Project Number Project Name Client	-	3250 goed High School, North Wales leeds Management Services Ltd								506
				Det	ection l					
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppm)	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)
00:00	<0.1	<0.1	<0.1	20.2	0.1	<1	<1		2.10	1.39
00:15	<0.1	<0.1	<0.1	12.7	3.3	<1	<1			
00:30	<0.1	<0.1	<0.1	11.7	3.4	<1	1			
00:45	<0.1	<0.1	<0.1	11.5	3.4	1	<1			
01:00	<0.1	<0.1	<0.1	11.5	3.4	<1	<1			
01:15	<0.1	<0.1	<0.1	11.5	3.4	<1	<1			
01:30	<0.1	<0.1	<0.1	11.4	3.4	<1	<1			
01:45	<0.1	<0.1	<0.1	11.4	3.4	<1	<1			
02:00	<0.1	<0.1	<0.1	11.4	3.4	<1	<1			
02:15	<0.1	<0.1	<0.1	11.4	3.4	<1	<1			
02:30	<0.1	<0.1	<0.1	11.4	3.4	<1	1			
02:45	<0.1	<0.1	<0.1	11.4	3.4	<1	<1			
03:00	<0.1	<0.1	<0.1	11.3	3.4	<1	<1			
03:15	<0.1	<0.1	<0.1	11.3	3.4	<1	<1			
03:30	<0.1	<0.1	<0.1	11.3	3.4	<1	<1			
03:45	<0.1	<0.1	<0.1	11.3	3.4	<1	<1			
04:00	<0.1	<0.1	<0.1	11.3	3.4	<1	<1			
04:15	╢╴┨									
04:30	╢──┤	<u> </u>						┝──┤		
04:45	╫╴┦					<u> </u>		╞──┤		
05:00										
Steady Peak	<0.1	<0.1	<0.1	11.3	3.4	<1	<1	#####	2.10	1.39
	0.0	0.0 0.0 0.0 20.2		3.4 1.0 1.0 0.0				2.10	1.39	
Date 25.08.2020	Enginee	Notes: Engineer DRS			Barometric Pressure, mbar				967	
						Pressu	re Tren	d	Ste	eady
	Equipm	ent	GFM43	30		Air Te	emp (°C)	1	L1

Project Number Project Name Client		C3250 Argoed High School, North Wales Gleeds Management Services Ltd								S08
				Det	ection L	imit			R	
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Ime	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppm)	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)
00:00			U	nable to	o locate	Boreho	ole			
00:15			_							
00:30										
00:45										
01:00										
01:15										
01:30										
01:45										
02:00										
02:15										
02:30										
02:45										
03:00										
03:15										
03:30										
03:45										
04:00										
04:15										
04:30										
04:45										
05:00										
Steady								######		
Peak	0.0	0.0 0.0 0.0 0.0			0.0 0.0 0.0 0.0				0.00	0.00
Date 25.08.2020	Engine	Notes: gineer DRS		Barometric Pressure, mbar Pressure Trend				967 Steady		
	Equipm	nent	GFM43	30			emp (°C)		11	

Project Number C3250 WS09 Project Name Argoed High School, North Wales Client **Gleeds Management Services Ltd Detection Limit** <0.1 <0.1 <0.1 <1 < 0.1 <0.1 <1 Volatile Organic Carbon (ppr Depth of Groundwater (mbgl Depth of Installation. (mbgl) Hydrogen Sulphide. (ppm) Carbon Monoxide. (ppm) Carbon Dioxide. (%vol) Gas Flow Rate. (I/hr) Methane. (%LEL) Methane. (%vol) Oxygen. (%vol) ime 20.3 3.50 00:00 <0.1 <0.1 0.1 <1 <1 0.22 <0.1 00:15 < 0.1 <0.1 <0.1 19.6 1.0 <1 <1 00:30 < 0.1 <0.1 <0.1 19.4 1.1 <1 <1 00:45 < 0.1 <0.1 < 0.1 19.2 1.2 <1 <1 01:00 <0.1 <0.1 <0.1 19.1 1.2 <1 <1 01:15 < 0.1 <0.1 <0.1 19.1 1.2 <1 <1 01:30 < 0.1 <0.1 <0.1 18.8 1.3 <1 <1 01:45 <0.1 <0.1 <0.1 18.8 1.3 <1 <1 02:00 <0.1 <0.1 <0.1 18.4 <1 <1 1.3 02:15 < 0.1 <0.1 <0.1 18.4 1.4 <1 <1 02:30 < 0.1 <0.1 <0.1 18.3 1.4 <1 <1 02:45 Stopped monitoring due to the gas kit started to 03:00 struggle 03:15 03:30 03:45 04:00 04:15 04:30 04:45 05:00 Steady <0.1 e to the <0.1 18.3 1.4 ##### 3.50 0.22 <1 <1 Peak 0.0 0.0 0.0 20.3 1.4 0.0 0.0 0.0 3.50 0.22 Date Notes: 967 25.08.2020 Engineer DRS Barometric Pressure, mbar **Pressure Trend** Steady Equipment GFM430 Air Temp (°C) 11

Project Number Project Name Client	C3250 Argoed H Gleeds M	-							W	506
				Det	ection l	Limit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (l/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppm)	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)
00:00	<0.1	<0.1	<0.1	20.5	0.1	<1	<1		2.06	1.42
00:15	<0.1	<0.1	<0.1	14.0	2.2	<1	1			
00:30	<0.1	<0.1	<0.1	12.0	2.3	<1	1			
00:45	<0.1	<0.1	<0.1	13.9	1.6	<1	1			
01:00	<0.1	<0.1	<0.1	14.9	1.5	<1	<1			
01:15	<0.1	<0.1	<0.1	15.5	1.3	<1	<1			
01:30	<0.1	<0.1	<0.1	16.1	1.1	<1	1			
01:45	<0.1	<0.1	<0.1	17.1	0.9	<1	<1			
02:00	<0.1	<0.1	<0.1	17.7	0.8	<1	1			
02:15	<0.1	<0.1	<0.1	18.1	0.7	<1	1			
02:30	<0.1	<0.1	<0.1	18.4	0.6	<1	3			
02:45	<0.1	<0.1	<0.1	18.8	0.6	<1	1			
03:00	<0.1	<0.1	<0.1	19.2	0.5	<1	<1			
03:15	<0.1	<0.1	<0.1	19.2	0.5	<1	1			
03:30	<0.1	<0.1	<0.1	19.3	0.5	1	<1		_	
03:45	<0.1	<0.1	<0.1	19.4	0.5	<1	<1			
04:00	<0.1	<0.1	<0.1	19.4	0.5	<1	1	╎╴┛		
04:15	<0.1	<0.1	<0.1	19.6	0.4	<1	<1	╞───┨		
04:30	<0.1	<0.1	<0.1	19.6	0.4	<1	<1			
04:45 05:00	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	19.6 19.6	0.4	<1 <1	<1 <1			
Steady	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1			-	-	#####	2.00	1.42
Peak	<0.1 0.0	<0.1 0.0	<0.1 0.0	19.6 20.5	0.4 2.3	<1 1.0	<1 3.0	##### 0.0	2.06 2.06	1.42 1.42
Date 02.09.2020		Notes: Engineer			Barometric Pressure, mbar Pressure Trend			994 Falling		
	Equipm	ent	GFM43	30		Air Te	emp (°C)	-	16

Project Number Project Name Client	C3250 Argoed I Gleeds N	-							W	S08
					ection L	imit				
		<0.1	<0.1	<0.1	< 0.1	<1	<1	<0.1		
	П	<0.1	<u>\0.1</u>	10.1	\0.1		\ 1			
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppm	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)
00:00				Unabl	e to loc	ate BH				
00:15										
00:30										
00:45										
01:00										
01:15										
01:30										
01:45										
02:00						ļ			_	
02:15										
02:30										
02:45									-	
03:00										
03:15										
03:30 03:45	╫──┤									
03:45	╫╴┤									
04:00	╫╴╢									
04:30	╫─┤								+	
04:45	╫─┤								+	
05:00	╫─┤								1	
Steady	#####	le to loc	#####	#####	#####	#####	#####	#####	#####	######
Peak	0.0				0.0	0.0	0.0	0.0	0.00	0.00
Date 02.09.2020	Engine	Notes: ngineer DRS		Barometric Pressure, mbar				994		
	-	Pressure Trend			Falling					
	Equipm	nent	GFM43	30		Air Te	emp (°C)			16

Project Number Project Name Client										509
				Det	ection L	imit				
_		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)
00:00				В	H flood	ed			3.50	0.05
00:15										
00:30										
00:45										
01:00										
01:15										
01:30										
01:45										
02:00										
02:15										
02:30										
02:45										
03:00										
03:15										
03:30										
03:45										
04:00										
04:15										
04:30										
04:45										
05:00										
Steady	#####	####BH flood ##### ##### ##### ##### ##### ####					#####	3.50	0.05	
Peak	0.0				0.0	0.0	0.0	0.0	3.50	0.05
Date 02.09.2020	Enginee	Notes: gineer DRS			Barometric Pressure, mbar Pressure Trend				994 Falling	
	Equipm					L6				

Project Number Project Name Client	C3250 Argoed H Gleeds N	-							W	506
				Det	ection L	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (l/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppm)	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)
00:00	<0.1	<0.1	<0.1	20.0	0.7	<1	<1		2.03	1.47
00:15	0.1	<0.1	<0.1	18.6	0.8	<1	<1			
00:30	0.1	<0.1	<0.1	18.1	0.7	<1	<1			
00:45	0.2	<0.1	<0.1	17.6	0.7	<1	<1			
01:00	0.2	<0.1	<0.1	17.6	0.7	<1	<1			
01:15	0.3	<0.1	<0.1	17.6	0.7	<1	<1			
01:30	0.4	<0.1	<0.1	17.9	0.7	<1	<1			
01:45	0.5	<0.1	<0.1	17.9	0.7	<1	<1			
02:00	0.6	<0.1	<0.1	17.9	0.7	<1	<1			
02:15	0.7	<0.1	<0.1	17.9	0.7	<1	<1			
02:30	0.8	<0.1	<0.1	17.9	0.7	<1	<1			
02:45	0.9	<0.1	<0.1	17.9	0.7	<1	<1			
03:00	0.9	<0.1	<0.1	17.9	0.7	<1	<1			
03:15	0.9	<0.1	<0.1	17.9	0.7	<1	<1			
03:30	2.8	<0.1	<0.1	17.9	0.7	<1	<1			
03:45	3.7	<0.1	<0.1	17.9	0.7	<1	<1		-	
04:00	3.7	<0.1	<0.1	17.9	0.7	<1	<1			
04:15	3.7	<0.1	<0.1	17.9	0.7	<1	<1			
04:30	3.7	<0.1	<0.1	17.9	0.7	<1	<1			
04:45 05:00	3.7 3.7	<0.1 <0.1	<0.1 <0.1	17.9 17.9	0.7 0.7	<1 <1	<1 <1	├───┟		⊢───┨
		-							2.02	1 47
Steady Peak	3.7 3.7	<0.1 0.0	<0.1 0.0	17.9 20.0	0.7 0.8	<1 0.0	<1 0.0	##### 0.0	2.03	1.47 1.47
Date 08/09/2020		Notes: Engineer HEB			Barometric Pressure, mba			e, mbar	1003	
							re Tren		_	eady
	Equipm	nent	GFM43	30		Air Te	emp (°C))	1	L8

Project Number Project Name Client	C3250 Argoed H Gleeds N	-							W	508
				Det	ection l	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppm)	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)
00:00	<0.1	<0.1	<0.1	20.7	< 0.1	<1	<1		2.83	0.86
00:15	<0.1	<0.1	<0.1	20.7	0.3	<1	<1			
00:30	<0.1	<0.1	<0.1	20.6	0.2	<1	<1			
00:45	<0.1	<0.1	<0.1	20.6	0.1	<1	<1			
01:00	<0.1	<0.1	<0.1	20.6	0.1	<1	<1			
01:15	<0.1	<0.1	<0.1	20.6	0.1	<1	<1			
01:30	<0.1	<0.1	<0.1	20.6	0.1	<1	<1			
01:45	<0.1	<0.1	<0.1	20.6	0.1	<1	<1			
02:00	<0.1	<0.1	<0.1	20.6	0.1	<1	<1			
02:15	<0.1	<0.1	<0.1	20.6	0.1	<1	<1			
02:30	<0.1	<0.1	<0.1	20.6	0.1	<1	<1			
02:45	<0.1	<0.1	<0.1	20.6	0.1	<1	<1			
03:00	<0.1	<0.1	<0.1	20.6	0.1	<1	<1			
03:15	<0.1	<0.1	<0.1	20.6	0.1	<1	<1			
03:30	<0.1	<0.1	<0.1	20.6	0.1	<1	<1			
03:45	<0.1	<0.1	<0.1	20.6	0.1	<1	<1			
04:00	<0.1	<0.1	<0.1	20.6	0.1	<1	<1			
04:15	<0.1	<0.1	<0.1	20.6	0.1	<1	<1	╞───┨		
04:30	<0.1	<0.1	<0.1	20.6	0.1	<1	<1	┟──┟		
04:45 05:00	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	20.6	0.1	<1 <1	<1			
Steady	<0.1 <0.1	<0.1	<0.1 <0.1	20.6	0.1		<1	<i>######</i>	2.02	0.86
Peak	<0.1 0.0	<0.1 0.0	<0.1 0.0	20.6 20.7	0.1	<1 0.0	<1 0.0	##### 0.0	2.83 2.83	0.86
				1			1			0.00
Date 08/09/2020	Engine	Notes: Engineer HEB		Barometric Pressure, mbar				10	003	
						Pressu	ire Tren	d	Ste	eady
	Equipm	ent	GFM43	30		Air Te	emp (°C)	1	18

Project Number Project Name Client	C3250 Argoed H Gleeds N		W	S09						
				Det	ection L	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl
00:00										
00:15					Flooded	1	1			
00:30										
00:45										
01:00									_	
01:15										
01:30										
01:45		_							_	
02:00									_	
02:15		-		-					-	
02:30		-							-	
02:45										
03:00		-							-	
03:15		-							-	
03:30 03:45	₩									
03:45	╫──┤							╎╴╹		
04:00	╟──┤							╞───╂		
04:30										
04:45	₩		<u> </u>							
05:00										
Steady	#####	Flooded ###### ###### ###### ###### ######						#####	######	
Peak	0.0	0.0							0.00	0.00
Date 08/09/2020	Engine	Notes: er HEB			Barometric Pressure, mbar Pressure Trend				1003	
	Equipm	nent	GFM43	30		Air Te	emp (°C)		Steady 18	

Appendix IX

COAL SEAM OUTCROP PRECAUTIONS – GUIDANCE NOTE 1

There are four potential problems at a coal seam outcrop:

- Shallow opencast workings (day-eyes)
- Combustion (spontaneous or otherwise)
- Sulphates
- 'Hard spot' (differential settlement)

This guidance note addresses the risk of combustion, sulphates and hard-spots.

In general the risk of igniting an unworked seam encountered at outcrop or at shallow depth in footings or drainage excavations is low. The risk is increased where aeration occurs (especially where the seam has been worked).

Dependent upon the calorific value of the seam, where it is less than 450mm thick, the coal is unlikely to be able to sustain prolonged combustion and generate sufficient heat to cause a problem.

Where it is thicker than 450mm the following general guidance applies:-

Where coal is exposed in footing excavations (over 450mm thick) it should be sealed from the air using compacted clay (or concrete used in footing).

Where coal is exposed in services trenches (over 450mm thick), the trench should be back filled above the pipe bedding surrounding the pipe or service with reasonably compacted clayey soil or sub-base. Sealing around manhole chambers should be carried out (as above) where the seam is over 900mm thick.

(*care required in carrying out compaction – no plant used where cover to pipe is less than 450mm).

Where seam is exposed across plot

Table 1

Seam thickness (mm)	Cover/seal thickness outside house footprint (incombustible material)	Cover/seal thickness beneath house (mm) (only applies where there is oversite beneath timber floor or where there is a beam and block floor)	Notes/comments
450-900	500mm for 5m	None	(unless open fire is to be used – 300mm)
900-2000	750mm for 7.5m	300	(if open fire to be used – remove coal for radius of 2m beneath centre of grate)
1000-3000	1000mm for 10m	500	(if open fire to be used – remove coal for radius of 3m beneath centre of grate)
>3000			Removal of coal

Notes for Table 1

1.If there is a layer of natural strata above the seam the thickness of the seal may be reduced accordingly.

Sulphates

Unless testing shows otherwise, sulphate precautions should be taken where foundations are in contact with a coal seam. Minimum class 2 conditions to BRE Digest 363 should be taken.

Geotechnical considerations where coal encountered in footings

Coal usually has a bearing capacity greater than that of natural clay soils surrounding it. The coal is very unlikely to cause a hard-spot problem any more onerous than a sandstone. Where sharp boundaries are encountered in footings between coal and clay, additional thickening and strengthening of the strip footing may be necessary.

