PHASE II GEO-ENVIRONMENTAL ASSESSMENT

Llanilltud Faerdref Primary School

WEPco Filename	RH0301-HSP-XX-XX-SU-G-00002
Suitability	A0
Revision	P01
Content Description	Llanilltud Faerdref Phase II Geo-Environmental
	Assessment

September 2021

CIVIL | STRUCTURAL | GEOTECHNICAL & ENVIRONMENTAL | TRAFFIC AND TRANSPORT

Llanilltud Faerdref Primary School St. Illtyds Rd, Church Village, Pontypridd CF38 1DA

Phase II Geo-Environmental Assessment Report

This report was produced by HSP Consulting Engineers Ltd for Fulcrum Infrastructure Management on behalf of Welsh Education Partnership (WEPCo) as the Phase II Geo-environmental Assessment Report for Llanilltud Faerdref Primary School, Pontypridd to identify possible areas of contamination and provide an assessment of potential ground related development constraints to inform design.

This report may not be used by any person other than for Fulcrum Infrastructure Management and Welsh Education Partnership (WEPCo) and must not be relied upon by any other party without the explicit written permission of HSP Consulting Engineers Ltd. In any event, HSP Consulting Engineers Ltd accepts no liability for any costs, liabilities or losses arising as a result of the use or reliance upon the contents of this report by any person other than for Fulcrum Infrastructure Management and Welsh Education Partnership (WEPCo).

All parties to this report do not intend any of the terms of the Contracts (Rights of Third Party Act 1999) to apply to this report. Please note that this report does not purport to provide definitive legal advice.

Issue & Revision History

Revision	Status	Originated	Checked	Approved	Date
-	INTERIM	L.Jones B.Sc. (Hons) FGS	J. P Bridgman BSc (Hons), CGeol, FGS	H.Pratt B.Eng (Hons), C.Eng, F.Cons.E, M.I.C.E, MI Mgt.	15.06.2021
А	FINAL	L.Jones B.Sc. (Hons) FGS	J. P Bridgman BSc (Hons), CGeol, FGS	H.Pratt B.Eng (Hons), C.Eng, F.Cons.E, M.I.C.E, MI Mgt.	20.09.2021
Project Number: HSP2021-C3103-G-GPII-175				Document Reference: C3103/PII	-
WEPco Refer	ence: RH030)1-HSP-XX-XX-SU-G-00	0002		

This document is available in hard copy, please contact the author to obtain a copy.

HSP Consulting Engineers Ltd, Lawrence House, 6 Meadowbank Way, Nottingham, NG16 3SB **T** 01773 535 555 **W** www.hspconsulting.com

Contents

1.		Introduction	1
	1.1	Background	1
	1.2	Client Brief & Scope	1
	1.3	Report Objectives	1
	1.4	Limitations	1
	1.5	Previous Reports	1
2.		Review of Existing Information & Geo-environmental Setting	3
	2.1	The Site	3
	2.2	Geology	4
	2.3	Pertinent Site Sensitivity Information	4
3.		Fieldwork & Factual Information	6
	3.1	Exploratory Methods	6
	3.2	In-situ Testing	6
	3.3	Laboratory Testing	6
	3.4	Ground Conditions	7
	3.5	Groundwater Levels	8
	3.6	Ground Gas Monitoring	8
	3.7	Visual and Olfactory Evidence of Contamination	9
4.		Geotechnical Assessment	10
	4.1	Detailed Ground Model	10
	4.2	Earthworks	11
	4.3	Excavations	12
	4.4	Foundations	12
	4.5	Ground Floor Slab	13
	4.6	Concrete Classification	14
	4.7	Drainage	14
5.		Environmental Assessment	15
	5.1	Introduction	15
	5.2	Assessment of Soil Analysis Results	15
	5.3	Human Health Mitigation	16
	5.4	Water Supply	16
	5.5	Ground Gas Risk Assessment	16
	5.6	Waste Classification	17
	5.7	Conceptual Site Model	17
6.		References	19

Appendices

Appendix I - Site Location Plan

Appendix II - Exploratory Borehole Logs

Appendix III - Ground Investigation Layout Plan

Appendix IV - Chemical Analysis Results
Appendix V - Geotechnical Analysis Results
Appendix VI - Ground Gas Monitoring Results

Appendix VII - HazWasteOnline™ Waste Classification Results

Executive Summary

HSP Consulting has been commissioned by for Fulcrum Infrastructure Management on behalf of Welsh Education Partnership (WEPCo) undertake an intrusive ground investigation at the site to investigate the existing ground conditions and provide information on likely constraints to the redevelopment, preliminary parameters for design and recommendations for any mitigation measures should they be required.

The site is located off St Illtyds Road, in the north of Church Village, approximately 4.1km south east of Pontypridd. The approximate National Grid Reference for the centre of the site is (NGR) 308660, 186050.

The ground investigation comprised 7No window sample boreholes to a maximum depth of 4.15m, 1No cable percussive boreholes to a maximum depth of 5.30m, and 5No rotary open hole boreholes. The rotary open hole boreholes were undertaken as part of a coal mining investigation. The findings of which are discussed in a separate Coal Mining Risk Assessment which should be read in conjunction with this report.

The ground investigation has proved limited Made Ground to maximum depths of 0.90m begl, overlying sandy gravelly CLAY (Till deposits) and weathered MUDSTONE of the Hughes Member to a maximum depth of 30.00m begl (base not penetrated).

The natural deposits are considered suitable for shallow spread foundations (strip or pad) within the underlying firm to stiff clays of the Diamicton Till or Upper Coal Measures at minimum depths of 0.75m bgl. HSP would recommend that an ABP of 225kN/m² could be utilised for design of traditional foundations. Foundations should be deepened within the location of WS05 and WS06 through any reworked materials.

The screening process for on-site human health receptors show that the GACs for a residential without home grown produce setting were not exceeded. The concentrations of potential contaminants recorded at the site indicates an acceptably low risk and therefore mitigation measures are not required as part of the development.

Ground gas concentrations have been monitored on four occasions in order to obtain an indication of the ground gas regime at the site. The gas monitoring indicates that the site generally falls into a Characteristic Situation 2 and therefore ground gas protection measures are required as part of the development.

The results of sulphate and pH testing carried out on selected soil samples taken during this investigation indicate it is appropriate to adopt a basic Design Sulphate Class of DS-1 together with and Aggressive Chemical Environment for Concrete (ACEC) of AC-1s.

Based on the chemical analysis report it is considered that specialist materials are unlikely to be required for water supply pipes at the site due to the low levels of contaminants recorded. However, confirmation of supply pipes should be sought from utility providers.

The executive summary contains an overview of key findings and conclusions. However, no reliance should be placed on the executive summary until the whole of the report has been read. Other sections of the report may contain information which puts into context the findings noted within the executive summary.

1. Introduction

1.1 Background

This report has been prepared to support a feasibility study for the redevelopment of the existing school site. It is proposed to demolish the existing school building and construct a new school to the southeast of the existing school buildings. The car parking, hard and soft landscaping will also be redeveloped as part of the project.

1.2 Client Brief & Scope

HSP Consulting has been commissioned by for Fulcrum Infrastructure Management on behalf of Welsh Education Partnership (WEPCo) to undertake an intrusive ground investigation at the site to investigate the existing ground conditions and provide information on likely constraints to the redevelopment, preliminary parameters for design and recommendations for any mitigation measures should they be required.

The report presents the following information:

- details of the ground investigation undertaken and the ground conditions encountered,
- details and results of the geotechnical testing and contamination analysis,
- recommendations for mitigating constraints to the proposed redevelopment where appropriate and providing parameters for foundation design.

Where applicable, the fieldwork was undertaken in accordance with BS5930:2015+A1:2020 Code of Practice for Ground Investigations and BS10175:2011+A1:2013 Investigation of Potentially Contaminated Sites.

1.3 Report Objectives

The objectives of this report are to:

- establish the geological and hydrogeological conditions using existing available/published information.
- summarise available information and identify site specific geotechnical and environmental hazards which may place a constraint upon the proposed site use.
- produce an updated Conceptual Site Model identifying potential pollution linkages between sources of contamination, pathways and receptors.

1.4 Limitations

The recommendations made in this report are based on the findings of the intrusive ground investigation undertaken by HSP Consulting Ltd between the 21st April and 7th May 2021.

1.5 Previous Reports

HSP Consulting have completed a Phase I Geo-environmental Desk Study Report (Ref 1) for the site, details of which can be found below:

• HSP Consulting Engineers Limited, Phase I Geo-environmental Assessment, 'Llanilltud Faerdref Primary School. September 2019, Ref: C3103/PI.

2. Review of Existing Information & Geo-environmental Setting

2.1 The Site

2.1.1 Location

The site is located off St Illtyds Road, in the north of Church Village, approximately 4.1km south east of Pontypridd. The approximate National Grid Reference for the centre of the site is (NGR) 308660, 186050. A Site Location Plan is included in Appendix I.

2.1.2 Description

The site is broadly rectangular in shape and approximately 1.22Ha in area. The main vehicle and pedestrian access is located on the south west boundary, whilst another vehicle gate is located on the eastern boundary, at the bottom of the playing field.

The site comprises the existing school buildings in the south west of the site and temporary classroom in the west. Hardstanding is generally asphalt concrete with a playground located to the north of the school buildings and car parking in the west of the site. Hardstanding areas are generally level, with the grassed playing field in the east sloping gradually to the south / south east.

Large metal containers were observed in the west of the site with excess materials stored adjacent, including plastic sheeting, roof tiles and tree cuttings.

A number of mature / semi mature trees and shrubs were observed on site.

The site is generally bound by metal / concrete post and wire fencing or wooden fencing in the north.

2.1.3 Surrounding Land Use

The main features of interest identified are:

North: Woodland with residential properties and Llantwit Fardre Leisure Centre beyond.

East: Grounds of the primary school with mixed use beyond, including residential, retail,

community and limited industrial.

South: MUGA (for the adjacent youth centre) with residential properties beyond.

West: Public open space/playing fields, youth centre, residential properties and

Gartholwg Community Campus beyond.

2.1.4 Proposed End Use

A new school is proposed to the southeast of the existing school buildings, which will be demolished as part of the redevelopment. New car parking, hard and soft landscaping will form part of the redevelopment proposals. The end use will remain as a primary school.

2.2 Geology

2.2.1 Made Ground

The BGS mapping does not indicate any Made Ground on the site.

2.2.2 Superficial Deposits

The BGS superficial mapping indicates Diamicton Till underlies the site, described by the BGS as 'unsorted and unstratified drift, generally overconsolidated, deposited directly by and underneath a glacier without subsequent reworking by water from the glacier. It consists of a heterogenous mixture of clay, sand, gravel, and boulders varying widely in size and shape'.

2.2.3 Bedrock Geology

BGS bedrock mapping indicates the site is underlain by the Hughes Member of the Carboniferous Period (part of the South Wales Upper Coal Measures Formation) described by the BGS as 'Green-grey, lithic arenites ("Pennant Sandstones"), with thin mudstone/siltstone and seatearth interbeds, and mainly thin coals.' A coal seam is inferred at outcrop in the north of the site, see 2.3 below.

A Coal Mining Risk Assessment was undertaken in March 2019 by HSP Consulting, which has been updated in June 2021 following Rotary Open Hole Drilling. This should be read in conjunction with this report.

2.2.4 Structural Geology

No faults are recorded within a 250m radius of the site boundary, however, dip and dip direction (13° north and 15° south) indicate a small syncline locally.

2.3 Pertinent Site Sensitivity Information

Based on the information collated for the desk study, the geo-environmental setting of the site is summarised as follows:

- The site is shown as agricultural fields from the earliest mapping (1875) until the early 1980s when *Llanilltud Faerdref Primary School* is recorded, the site use remains unchanged.
- The surrounding land use is generally agricultural from the earliest mapping (1875) but the town of Church Village gradually develops and expands through the 1900s, predominantly consisting of residential land use.
- No Made Ground is indicated within the site boundary on the published geological mapping. Superficial deposits of glacial till are expected on site, underlain by bedrock geology of the Hughes Member.
- The superficial deposits are designated as a Secondary Aquifer Undifferentiated.
 The bedrock geology is designated a Secondary A Aquifer.
- The site lies within a Coal Authority Reporting Area. A coal seam in inferred to outcrop in the north of the site and is therefore considered a Development High Risk Area.
- A landfill site is recorded approximately 50m north east of the site.

Based on the above, the environmental sensitivity of the site can be considered to be Very Low at this stage.

3. Fieldwork & Factual Information

Site work was carried out between the 6th and 13th April 2021. Where applicable, the fieldwork was undertaken in accordance with BS5930:2015+A1:2020 Code of Practice for Ground Investigations (Ref. 6) and BS10175:2011+A1:2013 Investigation of Potentially Contaminated Sites (Ref. 8).

The exploratory holes were selected by the Client across the wider school site and positioned on site by HSP to account for the position of services, to provide preliminary information for foundation design and obtain representative soil samples for geotechnical and geoenvironmental analysis.

3.1 Exploratory Methods

The exploratory methods are detailed in the table below.

Table 1 – Exploratory Methods of Investigation

Туре	Quantity	Maximum Depth (m)	Details
Windowless Sampling Boreholes	7	4.15	WS01 to WS07
Cable Percussive Borehole	1	5.30	CP01
Rotary Open Hole (Water Flush) Boreholes	5	30.00	R01 to R05

The exploratory holes were logged and sampled by an Engineer from HSP Consulting Ltd and the logs are presented in Appendix II. The exploratory hole locations are shown on the Ground Investigation Layout Plan presented in Appendix III.

Fragmentary bulk, disturbed and undisturbed samples were recovered from materials revealed within all the exploratory holes. Geo-environmental samples, placed in plastic tubs and glass jars supplied by the laboratory, were also obtained specifically for chemical analysis. The samples were taken to UKAS accredited laboratories for further examination and testing.

The rotary open hole boreholes were undertaken as part of a coal mining investigation. The findings of which are discussed in a separate Coal Mining Risk Assessment which should be read in conjunction with this report.

3.2 In-situ Testing

3.2.1 Standard Penetration Tests

Standard Penetration Tests (SPTs) were carried out at 1.00m intervals in the boreholes to 5.00m depth. The SPTs were undertaken in accordance with EN ISO 22476-2 2005: A1 2011 and the results are included on the appended borehole logs (Appendix II).

3.3 Laboratory Testing

The laboratory testing schedules were prepared by HSP Consulting Ltd.

3.3.1 Geotechnical Testing

Geotechnical testing has been scheduled to be undertaken by a UKAS accredited laboratory as part of the works at the site:

- Plasticity Index
- Natural Moisture Content
- Particle Size Distributions

The laboratory testing is being undertaken by Apex Testing Solutions (UKAS accredited, laboratory No.7771), in accordance with BS1377:1990 using calibrated equipment specifically for the British Standard. Testing certificates are presented within Appendix V.

3.3.2 Chemical Analysis

The geo-environmental samples retained specifically for chemical analysis were stored in cooled containers until delivery to the laboratory by courier.

Chemical analysis was scheduled on eight soil samples for the presence of a selected suite of potential contaminants as outlined in the tables below.

Table 2a - Chemical Analysis

Exploratory Hole Location & Depth	Sample Description	Exploratory Hole Location & Depth	Sample Description
WS01, 0.30m ^{1,2}	CLAY	WS05, 0.30m	MADE GROUND ^{1,2,4}
WS01, 1.00m ³	CLAY	WS05, 1.00m	CLAY ³
WS02, 0.95m ^{1,2}	CLAY	WS06, 0.50m	MADE GROUND ^{1,2,4}
WS02, 2.00m ³	CLAY	WS06, 0.95m	CLAY ^{1,2}
WS03, 0.20m ^{1,2}	CLAY	WS06, 2.00m	CLAY ³
WS03, 3.00m ³	CLAY	WS07, 0.60m	CLAY ^{1,2}
WS04, 0.55m ^{1,2}	CLAY		

¹ HSP Standard Suite, ² Organic Matter, ³ BRE Sulphate Suite, ⁴ Asbestos Screen

Table 2b – HSP Standard Chemical Analysis Suite

Metals	Cadmium	Chromium (III & VI)	Copper
	Lead	Mercury	Nickel
	Zinc		
Semi Metals and Non-metals	Arsenic	Boron	Selenium
Others	рН		
Inorganic Chemicals	Cyanide	Sulphate	Sulphide
Organic Chemicals	PAH (US EPA 16)	TPH (CWG)	Phenol

The contamination analysis was carried out by Eurofins Chemtest Limited (UKAS accredited, laboratory No. 2183) during the period 23rd April to 4th May 20201. The results are presented in Appendix IV.

3.4 Ground Conditions

3.4.1 Published Geology

The published geology indicates superficial Till deposits overlying bedrock geology of the Hughes Member of the Carboniferous Period, as described in section 2.2 above.

3.4.2 Ground Conditions on site or General Geology & Revealed Strata

The exploratory hole data confirms the published information. The strata generally comprises:

Table 3 – Encountered Ground Conditions

Table 3	– Encountered Ground			
	Strata	Depth (m begl)	Thickness (m)	Description
genic	TOPSOIL	G.L. – 0.25	0.25m	Dark brown slightly sandy slightly gravelly clayey TOPSOIL with many rootlets.
Anthropogenic	POTENTIAL REWORKED NATURAL GROUND	0.15 – 0.90	0.75m	POTENTIAL REWORKED NATURAL GROUND comprising brown grey mottled yellow sandy gravelly clay fill with gravels of coal.
Superficial	DIAMICTON TILL	0.15 – 1.30	1.15m	Firm brown grey mottled sandy gravelly CLAY. Gravels are of Mudstone.
Super	DIAMICTON FILE	1.30 – 5.40	4.10m	Stiff grey mottled brown slightly sandy gravelly CLAY. Gravels are of Mudstone.
		2.80 - 3.25	0.45m	Extremely weak MUDSTONE (recovered as gravelly Clay).
		3.25 – 15.10	11.85m	Weak grey MUDSTONE with occasional Sandstone bands.
충	HUGHES MEMBER	15.10 – 15.40	0.30m	Black COAL.
Bedrock	of the CARBONIFEROUS	15.40 – 17.40	2.00m	Weak grey MUDSTONE with Sandstone bands.
å	PERIOD	17.40 – 17.50	0.10m	Black COAL.
		17.50 – 17.70	0.20m	Weak grey MUDSTONE.
		13.50 – 30.50	27.00m	Weak grey SANDSTONE with trace Coal and Sandstone bands.

3.5 Groundwater Levels

Two groundwater strikes were encountered during the windowless borehole sampling at 1.80m begl within WS05 and 2.50m begl within WS06. Within the rotary open hole boreholes groundwater strikes were encountered between 4.10m (R01) and 13.50m (R02 / R03) begl.

Groundwater level monitoring has been undertaken within the monitoring installations on four occasions in conjunction with the ground gas monitoring. The standpipes installed within WS01 and WS06 were recorded as flooded at the time of the initial monitoring. Subsequent monitoring has recorded groundwater between 0.60m begl (103.9m AOD) and 1.70m begl (102m AOD).

3.6 Ground Gas Monitoring

Dual use gas and groundwater monitoring installations were fitted within three of the boreholes at the site (WS01, WS03 and WS06). Each well has been constructed using plain and slotted 50mm diameter HDPE pipe as shown on the logs in Appendix II. All of the borehole installations have a 6mm pea gravel surround to the slotted pipe with a bentonite seal above and a gas tap. The covers are cemented flush with ground level and are round lockable stopcock covers.

HSP Consulting uses a GFM 430 Gas Analyser. Prior to its use a calibration check can be performed against gas readings in air. It is recommended that this check is undertaken once on each day the analyser is used. Annual calibration is undertaken on the unit and a copy of this certificate has been included within Appendix VI.

The results of the ground gas monitoring are discussed in Section 5.6 below.

3.7 Visual and Olfactory Evidence of Contamination

No visual and olfactory evidence of contamination was noted in the exploratory holes during the ground investigation.

4. Geotechnical Assessment

4.1 Detailed Ground Model

For the purpose of this foundation assessment the information gained from the window sample and cable percussion boreholes has been included. The borehole logs are presented in Appendix II.

4.1.1 Topsoil

Topsoil was encountered within all of the exploratory locations to a maximum depth of 0.25m begl (WS04). The deposits comprised grass over dark brown slightly sandy, slightly gravelly clayey TOPOSIL with many rootlets.

4.1.2 Made Ground

Limited made ground was encountered on site. Within, WS05 and WS06 made ground deposits comprising brown grey mottled yellow sandy gravelly clay, with gravels of coal were encountered to a maximum depth of 0.90m begl. These materials are likely to be reworked natural materials, derived from within the site during the original development, used to form level playing fields. The base of all made ground materials were penetrated.

4.1.3 Diamicton Till

Diamicton Till deposits were encountered within all exploratory boreholes to a maximum depth of 5.40m begl (R04).

The deposits generally comprised Firm brown grey mottled sandy gravelly CLAY to 1.30m begl overlying Stiff grey mottled brown slightly sandy gravelly CLAY to a maximum depth of 5.40m begl (R04).

4.1.4 Hughes Member

Bedrock deposits were encountered within all exploratory hole locations to a maximum depth of 30.00m begl within the rotary boreholes (base not penetrated).

At shallow depths, the deposits generally comprised Extremely weak weathered MUDSTONE which was recovered as gravelly CLAY. These deposits graded into weak grey MUDSTONE with Sandstone bands to 17.70m begl. Two bands of black weathered COAL were encountered between 15.10m begl to 15.40m begl and 17.40m begl to 17.50m begl. The mudstones grade into generally weak grey SANDSTONE with trace Coal and Mudstone bands.

4.1.1 Groundwater

Groundwater level monitoring has been undertaken within the monitoring installations on four occasions in conjunction with the ground gas monitoring. The standpipes installed within WS01 and WS06 were recorded as flooded at the time of the initial monitoring visit. A further three groundwater level monitoring visits have been completed and the groundwater levels have been recorded between 0.60m begl (103.9m AOD) and 1.70m begl (102m AOD). HSP

consider that the recorded entries are trapped meteoric water which may have seeped into the borehole rather than a reflection of true groundwater levels.

4.1.2 In-situ Testing, Laboratory Testing and Assessment

A series of Standard Penetration Tests (SPT's) were undertaken within all boreholes. The following table summarises the N values at depth across the site within the underlying natural deposits.

Table 4 - SPT N Values

Depth (m)	Range of 'N' Values	Mean 'N' Value	Description
1.00	11 – 32	20	TILL (Clay)
2.00	17 - 50	30	TILL (Clay)
3.00	30 - 50	43	TILL (Clay)
3.00	50	50	HUGHES MEMBER (Mudstone)
4.00	50	50	HUGHES MEMBER (Mudstone)
5.00	50	50	HUGHES MEMBER (Mudstone)

Six Plasticity Index tests and two Particle Size Distribution tests have been undertaken to confirm the visual description and engineering behaviour of the soils. The results are presented in full within Appendix V.

The results of the plasticity index testing indicate compliance with the definition of soils of low to intermediate plasticity (CL - CI) after the classification system of BS5930:2015+A1:2020. Fine soils across the site are generally considered to be of a Low Volume Change potential in accordance with the National House Building Council (NHBC) Standards, Chapter 4.2: 2007.

Table 5 - Plasticity and Volume Change Potential

Sample Ref:	Laboratory Material Descriptions	LL (%)	PL (%)	PI (%)	% passing 425µm	Modified PI (%)*	Soil Class	MC (%)
WS01, 1.5m	Grey slightly gravelly CLAY	23	15	8	73	6	CL	11.9
WS02, 2.20m	Grey slightly gravelly CLAY	48	23	25	72	18	CI	16
WS04, 1.90m	Grey, brown slightly gravelly CLAY	39	18	21	82	17	CI	16.4
WS05, 0.90m	Light brown, grey slightly gravelly CLAY	24	15	9	92	8	CL	18.7
WS06, 1.10m	Brown slightly gravelly CLAY	26	14	12	81	10	CL	11.6
WS07, 2.20m	Light brown, grey slightly gravelly CLAY	43	20	23	74	17	CI	14.5

^{*} Rounded up

4.2 Earthworks

Significant earthworks operations are not expected at the site. It is likely that natural near surface soil arisings generated on site will be suitable for use as engineered fill on site, subject to appropriate testing and assessment.

Should materials prove to be suitable, placement and compaction would need to be strictly controlled and supervised. Project programming should consider the 'earthworks window' (prevailing dry & warm climatic conditions) as the soil materials will be susceptible to softening during periods of wet weather and will be easily damaged by site traffic and deterioration at times of heavy rainfall.

4.3 Excavations

In general, excavations to proposed formation levels for new foundations and infrastructure should be feasible using standard excavation plant and equipment. Random and potentially severe falls should be anticipated from the faces of near vertically sided unsupported excavations carried out at the site. Where personnel are required to enter near vertically sided excavations, it is considered that full support should be provided to the full depth of all excavations.

It is recommended that all support systems are continually assessed by fully trained or experienced personnel.

It should be noted that groundwater levels may vary due to seasonal variations or other effects. Should shallow groundwater entries be encountered at the site during groundwork operations, traditional sump and pump dewatering should be sufficient if required.

4.4 Foundations

The development proposals indicate the construction a new one to two storey school to the southeast of the existing school buildings. Upon completion of the new school building the existing buildings will be demolished. The car parking, hard and soft landscaping will also be redeveloped as part of the project. The end use will remain as a primary school.

The foundation assessment is based on the window sample and cable percussion exploratory holes across the development area, as selected by the Client and positioned on site by HSP to account for the position of services.

The table below shows the indicative allowable bearing pressure (ABP) that could be achieved using strip or pad foundations across the site. The ground conditions were generally consistent across the exploratory holes.

An ABP has been calculated using the 'average' corrected SPT N at 1.00m and 2.00m, excluding higher SPT anomalies within WS01.

Table 6 – Allowable Bearing Capacity

Depth (m)	SPT (N ₁) ₆₀ Value	Eurocode 7 Soil Strength Description	Consistency (BS5930) Description	Approximate ABP (k/Nm²) – 0.60m wide strip footing	Approximate ABP (kN/m²) – 2x2m pad footing
1.00	27	Medium to High	Stiff	225	235
2.00	37	High	Very stiff	335	350

HSP would recommend that all foundations are taken down to bear upon the competent natural deposits that have been encountered across the site. From the above table HSP would recommend that an ABP of 225kN/m² could be utilised for design of traditional foundations from a minimum depth of 0.75m begl. Foundations will need to be deepened where reworked natural ground has been encountered, particularly within the location of WS05 and WS06 however other areas of reworked or made ground may be present on site. The ABP generally increases at 2.00m as detailed in the above table, however we would recommend that the ABP for design is limited to 225kN/m³ to account for the variability within the SPTs at 2m begl.

It should be noted that design loadings have not been provided at this stage, traditional pad or strip/trench foundations are viable at the site for lightly loaded structures. Where proposed building loads may exceed the ABP, an alternative foundation solution such as piling should be considered. Any piling solution would need to be designed and warranted by a specialist subcontractor. It is recommended the foundation options are reviewed once the layout and loadings have been finalised.

Where foundations (and ground floor slabs) are located within fine grained deposits within influencing distance of existing or proposed trees these will need to be locally deepened in accordance with NHBC Standards Chapter 4.2 Building near Trees for a clay of low volume change potential.

A Coal Mining Risk Assessment was prepared for the site by HSP in March 2019 and has been updated in June 2021 which should be read in conjunction with this report. The assessment concluded that no voids, loss of flush or indication of worked seams were recorded within any of the exploratory locations, indicating further investigation or treatment works should not be required prior to the re-development of the site based on the Coal Authority records and the ground investigation.

There is a low risk of combustion associated with the Westernmoor coal seam outcropping in the north of the site. Should the coal seam be exposed in foundation or service trenches, it should be sealed from the air using compacted clay or concrete, dependant on the seam thickness.

4.5 Ground Floor Slab

A ground bearing floor slab is considered suitable for the proposed development. It would be prudent to either proof roll the areas of WS05 and WS06 or replace the made ground deposits / reworked materials with suitable compacted stone or engineered fill. However, a suspended floor slab may be required as part of ground gas protection measures. The site has been classified as a Characteristic Situation 2 and therefore gas protection measures will be required within the new development.

4.6 Concrete Classification

The results of sulphate and pH testing carried out on selected soil samples taken during this investigation have been compared with the recommendations outlined in BRE Special Digest 1, Part 1: 2005.

The guidelines given in BRE Special Digest 1 are based upon a site classification relating to its previous usage. It is considered appropriate to define this site as a 'natural ground' location for the purposes of concrete classification.

On the basis of the above, it is considered appropriate to adopt a basic Design Sulphate Class for the Made Ground and underlying natural soils of DS-1 together with an Aggressive Chemical Environment for Concrete (ACEC) of AC-1s.

4.7 Drainage

No infiltration testing has been undertaken as part of this investigation. The intrusive works have confirmed firm sandy gravelly Clays overlying weathered very weak Mudstone. Limited Made Ground has been encountered on the site.

Infiltration drainage may be possible at the site and HSP would recommend that soakaway testing in accordance with BRE 365 is undertaken on site to determine the suitability of the underlying soils.

5. Environmental Assessment

5.1 Introduction

The approach to the human health risk assessment reported here follows the principals given in CLR 11, i.e. application of the following assessment hierarchy:

- Tier 1 risk screening by establishment of potential pollutant linkages, i.e. the preliminary conceptual site model (PCSM), or
- Tier 2 generic quantitative assessment using generic assessment criteria (GACs) that represent 'acceptably low' risk, or
- Tier 3 quantitative risk assessment using site specific assessment criteria (SSACs) that represent 'unacceptable risk', or where generic assessment criteria are not available, or they are not applicable to the CSM.

The results of laboratory analysis have been screened against GACs including the Defra Category 4 Screening Levels (C4SL) and LQM and CIEH S4ULs for Human Health Risk Assessment (Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3180. All rights reserved). (Refs 11 and 10 respectively).

In the absence of a standard scenario for a school environment the standard exposure scenario of residential without home grown produce has been used to identify potential exposure pathways for human health receptors. Controlled water, flora and fauna and property receptors have also been included within the CSM. Our Tier 2 HHRAs for school sites are screened against the GACs representative of minimal risk for residential without home grown produce end use, we believe this to be appropriate based on the precautionary principle the CLR guidance advocates.

It should be noted that organic contamination (PAH, TPH and BTEX) have been screened against the GAC for 1% Soil Organic Matter (SOM).

The assessment of PAHs is undertaken using the surrogate marker approach; recommended by Health Protection Agency (2010) guidance, providing the PAH profile is sufficiently similar to the coal tars tested by Culp et al (1998). Where PAH profile is not sufficiently coal tar like the TEF method is adopted using the LQM and CIEH S4ULs. Prior to assessment a PAH profile is generated for all samples analysed for PAH using the LQM PAH Profiling Tool v1.3, however, negligible PAHs have been identified as part of the testing and therefore no graphical output has been produced.

5.2 Assessment of Soil Analysis Results

Thirteen samples, as detailed in section 3.3.2, were scheduled for analysis from the proposed redevelopment area. Eight of these samples were scheduled to provide a basis for characterising the soils to outline the potential impacts on human health and any environmental receptors from any contamination found.

The screening process for on-site human health receptors show that none of GACs, representative of minimal risk for a residential with home grown produce setting were exceeded.

Two made ground soil samples were submitted for an asbestos screen and identification. No asbestos has been identified.

5.3 Human Health Mitigation

Concentrations of potential contaminants recorded at the site did not exceed the GACs for a residential without homegrown produce end use indicating an acceptably low risk and therefore significant mitigation measures are unlikely to be required as part of the development.

Should any obvious evidence of unexpected contamination be encountered during the redevelopment works it should be reported to HSP so that an inspection can be made and appropriate sampling and assessment work be carried out.

Appropriate health and safety precautions should be adopted during any excavation works to avoid exposure to potentially contaminated soils and dust. Consideration should be given to the HSE document HSG 66 'Protection of workers and the General Public during Redevelopment of Contaminated Land'.

The approval of the local Environmental Health Officer should be sought with respect to the soil contamination assessment and mitigation proposals.

5.4 Water Supply

The environmental testing for the site has been compared to the following document in order to assess the most appropriate pipe material that should be used upon the site for mains water supply:

'Guidance for the selection of water supply pipes to be used in Brownfield sites – UK Water Industry Research – Ref: 10/WM/03/21.'

Based on the chemical analysis report it is considered that specialist materials are unlikely to be required for water supply pipes at the site due to the low levels of contaminants recorded. However, confirmation of supply pipes should be sought from utility providers.

5.5 Ground Gas Risk Assessment

Ground gas concentrations have been monitored on four occasions in order to obtain an indication of the ground gas regime at the site. At the time of the first visit WS01 and WS06 were found to be flooded and it was not possible to monitor these locations.

The results of monitoring indicates that methane has not been recorded above the limits of detection. Carbon dioxide has been recorded at concentrations up to a maximum 5.3% by

volume in air within WS03. Steady state gas flows above the limit of detection have not been recorded during the monitoring visits. From the results above, the maximum steady state gas screening value for the site is 0.0053 l/hr.

The results have been assessed in line with the guidance provided in BS8485:2015 + A1:2019 Code of Practice of the design of protective measures for methane and carbon dioxide ground gas for new buildings (Ref 15) and CIRIA Document C665 'Assessing Risks Posed by Hazardous Ground Gases to Buildings' (Ref 16). Comparison of these results with Table 2 of BS8485:2015 + A1:2019 indicates that the site falls into a Characteristic Situation 2 and therefore ground gas protection measures are likely to be required as part of the development.

The gas protection score should be determined based on Characteristic Situation 2 and Building Type as outline in Tables 3 and 4 of BS8484: 2015 +A1:2019 (Ref 15). The gas protection score will determine the combination of elements required from Table 5 to 7 inclusive (Ref 15) to achieve the minimum recommended gas protection. Detailed design, implementation, verification and reporting should be undertaken in accordance with the guidance (Ref 15).

Slightly depleted oxygen levels were observed during the monitoring visits. This poses a risk of asphyxiation to construction and maintenance workers in confined spaces such as excavations or manhole chambers. A confined spaces risk assessment should be carried out prior to working in any buried structures or excavations.

The gas monitoring certificates to date are presented in Appendix VI.

5.6 Waste Classification

The results of the chemical testing have been assessed using web-based software for classifying hazardous waste, using HazWasteOnline TM . From the samples tested, all are classified as non hazardous.

Please note the above classification provides an indication of how the material should be classified for removal off site; however this should be used at your approved waste handler's discretion and further testing may be required prior to any offsite disposal.

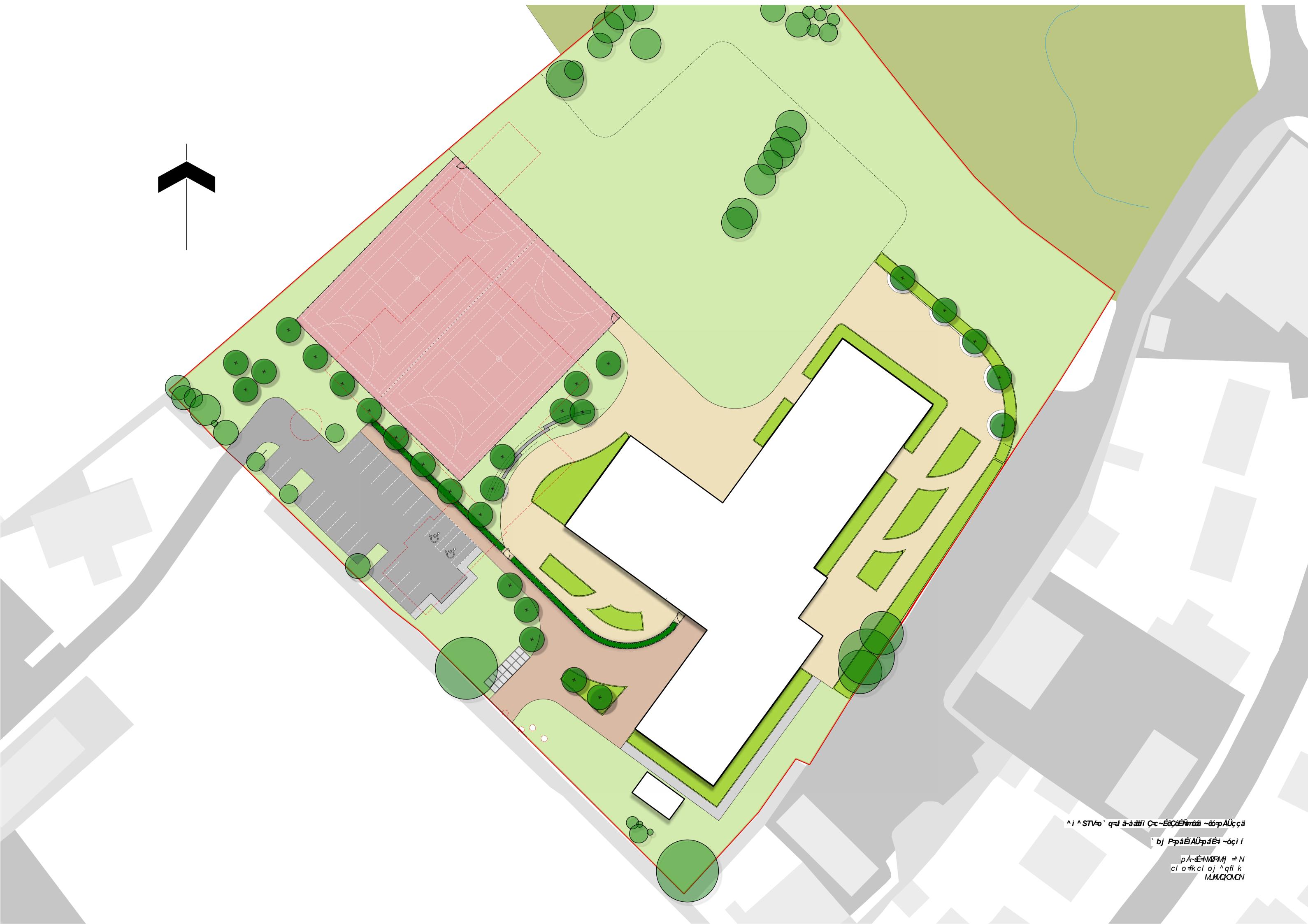
The results are included in Appendix VII.

5.7 Conceptual Site Model

Based on the findings of this site investigation and Phase I Report, a conceptual site model has been produced and is presented in the table below.

Table 7 -	Updated	Conceptual	Site Model.
-----------	---------	------------	-------------

Source	Pathway	Receptor	Consequence	Probability	Risk	Comments
	P1: Human uptake pathways	R1: End Users R2: Construction and maintenance workers	Mild	Low Likelihood	Low	Concentrations of contaminants of concern are below the relevant GACs within the near surface deposits sampled across the site and therefore the risk is considered to be LOW.
On site S1: Historical and Contemporary land use: Agricultural land and Educational Facility. S2: Hughes Member	P2: Horizontal and vertical migration of contaminants through potentially permeable soils and rocks. P3: Migration of contaminants along preferential pathways (man- made). P4: Overland flow / Surface runoff.	R1: End Users R2: Construction and maintenance workers R3: Controlled Water: Groundwater & Surface Water	Mild	Low Likelihood	Low	The superficial geology is classified as a Secondary Undifferentiated Aquifer and bedrock geology is classified as a Secondary A Aquifer. Concentrations of contaminants of concern are below the relevant GACs within the near surface deposits sampled across the site, in addition to this given the lack of plausible sources / pathways and the low vulnerability of the underlying aquifers, the risk to controlled water is considered to be LOW.
(South Wales Upper Coal Measures Formation.) Off Site (within 250m)	P5: Vertical and lateral migration of ground gases and/or vapour.	R1: End Users	Mild	Low Likelihood	Low	The gas monitoring indicates that the site falls into a Characteristic Situation 2 and therefore ground gas protection measures will be required as part of the development. At this stage the risk is considered to be LOW.
S3: Historic landfill recorded approximately 40m north east of the site boundary.	P2: Horizontal and vertical migration of contaminants through potentially permeable soils and rocks. P3: Migration of contaminants along preferential pathways (man- made). P4: Surface runoff.	R4: Property, services and substructures R5: Adjacent School buildings and Residential Properties	Mild	Low Likelihood	Low	For any concrete likely to be in contact with made ground materials, the chemical analysis indicates it is considered appropriate to adopt a basic Design Sulphate Class of DS-1 together with and Aggressive Chemical Environment for Concrete (ACEC) of AC-1s. Based on the chemical analysis report it is considered that specialist materials are unlikely to be required for water supply pipes at the site due to the low levels of contaminants recorded, however, confirmation should be sought from utility providers. The risk is considered to be LOW. ** In regard to P5, please see the comments in the row above
	P6: Root uptake.	R6: Proposed Flora and fauna	Mild	Low Likelihood	Low	Landscaping is likely to form part of the development. The risk of uptake to proposed flora and fauna is considered LOW.



6. References

- 1. HSP Consulting Engineers Limited, Phase I Geo-environmental Assessment, 'Llanilltud Faerdref Primary School. September 2019, Ref: C3103/PI.
- 2. BRITISH GEOLOGICAL SURVEY. 1970, 'Newport. England and Wales Sheet 249. Solid and Drift Deposits. 1:50 000 (Keyworth, Nottingham: British geological Survey).
- 3. British Geological Survey Lexicon Search http://www.bgs.ac.uk/lexicon/
- 4. Department of the Environment Industry Profiles.
- 5. Site Investigation in Construction, Volume 3, Specification for Ground Investigation 2nd Edition.
- 6. BS 5930:2015 Code of Practice for Site Investigations.
- BS 8576:2013 Guidance on investigations for ground gas. Permanent gases and Volatile Organic Compounds (VOCs)
- 8. BS10175:2011 +A1:2013 Investigation of Potentially Contaminated Sites Code of Practice.
- 9. NHBC Standards, Chapter 4.2, Building near trees.
- 10. Nathanail, C.P., McCaffrey, C., Gillett, A.G., Ogden, R.C. and Nathanail, J.F. 2015. The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, Nottingham.
- 11. Department for Environment, Food and Rural Affairs and Contaminated Land: Applications in Real Environments (CL:AIRE) (December 2013). SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination.
- 12. BRE Special Digest 1:Concrete in Aggressive Ground, 2005, Building Research Establishment.
- 13. CL:AIRE The definition of Waste: Development Industry Code of Practice, 2008.
- 14. NHBC & RSK Group Plc, March 2007. Guidance on evaluation of development proposals on sites where methane and carbon dioxide are present. Ed 4.
- 15. BS8485:2015 + A1:2019 Code of Practice of the design of protective measures for methane and carbon dioxide ground gas for new buildings
- 16. CIRIA C665 'Assessing Risks Posed by Hazardous Ground Gases to Buildings'
- 17. Department for Environment, Food and Rural Affairs and Contaminated Land: Applications in Real Environments (CL:AIRE) (December 2013). SP1010: Appendix E Provisional C4SLs for Benzo(a)pyrene as a surrogate marker for PAHs.
- 18. www.environment-agency.gov.uk
- 19. Environment Agency, Freshwater Environmental Quality Standards (EQS) contained in the Hydrogeological Risk Assessment for Landfills and the Derivation of Groundwater Control and Trigger Levels, 2015.
- 20. HMSO, Water Supply (Water Quality) Regulations, 2002

Appendix I

Appendix II

Control Name Canada Control Canada C	L	-	n							Borehole N	lo.
Sheel 1 of 1 Shee		5	Р			Borehole Log				CP01	
Co-distant Co-	con	sult	ing						9	Sheet 1 of	1
1-50 1-50	Project	Name:	Llanilltud F School	aerdre				Co-ords:	308678.00 - 186028.00		е
West Water Samples and in Situ Testing Depth Strikes Depth Depth Strikes Depth Dep	Locatio	n:	Pontyprido	ł				Level:	104.20		
Water Samples and in Situ Testing Depth (m) Type Results Color C	Client:		Fulcrum In	nfrastru	ıcture Manageme	nt.		Dates:	04/05/2021 -		
Sulkes Depth (m) Type Results (m) (m) (m)			Samples	s and	In Situ Testing			Legend	Stratum Description	`	
0.30 - 1.00 B	VVCII	Strikes		Туре	Results	(m)	1	Legend	Stratum Description	ı	
1.00 1.20 - 1.06 B N=11 (1,2/2,3,2,4) 1.20 - 1.66 B N=17 (2,3/4,4,4,5) 3.00 3.00 - 3.45 B So (6,8/50 for 235mm) So (12,19/50 for 235mm) So (50,/50 for 235mm) So (6,8/50 for 23						1		W/W/W/W		casional	=
1.00 1.20 - 1.65 B N=11 (1,2/2,3/2,4) 1.20 - 1.65 B N=17 (2,3/4,4,4,5) 2.00 2.00 - 2.45 B N=17 (2,3/4,4,4,5) 3.70 100.50 Very weak grey weathered MUDSTONE. [Hughes Member]. So (12,13/50 for 235mm) 4.00 - 4.45 B So (50,/50 for 235mm) 5.00 So (50,/5			0.30 - 1.00	В		0.30	103.90		Firm brown sandy CLAY. [Diamictor	n Till].	1
1.20 - 1.65 B 2.00 2.00 - 2.45 B 3.00 3.00									Firm brown grey gravelly CLAY. [Di	amicton Till].	_
1.20 - 1.65 B 2.00 2.00 - 2.45 B 3.00 3.00											_ =
2.00 2.00 - 2.45 B N=17 (2.3/4,4,4,5) 3.00 3.00				B	N=11 (1,2/2,3,2,4	.)					1 -
2.00 - 2.45 B 3.00			1.20 1.00								=
2.00 - 2.45 B 3.00											
2.00 - 2.45 B 3.00						.					
3.00 - 3.45 B 235mm) 4.00				В	N=17 (2,3/4,4,4,5	5)					2 —
3.00 - 3.45 B 235mm) 4.00											_
3.00 - 3.45 B 235mm) 4.00											_
3.00 - 3.45 B 235mm) 4.00											
3.00 - 3.45 B 4.00			3.00								3 —
4.00			3.00 - 3.45	В	20011111)						-
4.00											_
4.00 - 4.45 B							100.50			ONE.	
4.00 - 4.45 B 5.00			4.00						[Hugnes Member].		4 =
235mm) 5.30 98.90 Veak grey WUDS TONE. [Intiglies Member]. 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7			4.00 - 4.45	В	23311111)						
235mm) 5.30 98.90 Veak grey WUDS TONE. [Intiglies Member]. 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7											_
235mm) 5.30 98.90 Veak grey WUDS TONE. [Intiglies Member]. 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7]
5.30 98.90 End of borehole at 5.30 m 6			5.00			5.00	99.20		Weak grey MUDSTONE. [Hughes	Member].	5 —
8-					23311111)	5.30	98.90		End of borehole at 5.30 m		
											_
											_ _
											6 -
											_
											_
9-											7 _
9-											
9-											
9-											=
											8 -
]
											=
											₉
]
											$ _{10}$ $=$
	Remar	ks									

Borehole terminated at 5.30m bgl due to refusal.

		5							Borehole N	lo.
Π	5	D				Boi	reho	ole Log	R01	
cons	sulti	ing					•		Sheet 1 of	4
Project	Name:	Llanilltud F School	aerdre		Project No. C3103		Co-ords:	308657.00 - 186000.00	Hole Type RO	
Location	n:	Pontypridd			00100		Level:	104.69	Scale 1:50	
Client:		Fulcrum In	frastru	cture Manageme	ent.		Dates:	04/05/2021 -	Logged B	
,	Water			n Situ Testing	Depth	Level			Dom Price	е
	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
					0.20	104.49		Grass over brown sandy silty TOPS many rootlets and occasional sands coarse angular to subrounded grave	stone fine to	=
								Brown sandy CLAY with occasional coarse angular to subrounded sand	fine to	_
								gravels. [Diamicton Till].		1 -
										_
										_ = -
										2 -
										_ _
										_ _ _
										3 -
										- - -
										-
										4 =
										_ _
										_ _ _
					4.90	99.79		Grey MUDSTONE with occasional sbands. [Hughes Member].	sandstone	5 -
										=
										- - -
										6 -
										_ _ _
										-
										7 -
										8 —
										-
										9 —
Remark	(S							Continued on next sheet		10 —

Borehole terminated at 30.50m.

Groundwater strikes at 4.10m and 14.00m begl.

L		n							Borehole N	Ю.	
Ш	5	р				Bo	reho	ole Log	R01		
con	sult	ing							Sheet 2 of	4	
Projec	t Name:	Llanilltud F School	aerdre	ef Primary	Project No. C3103		Co-ords:	308657.00 - 186000.00	0 - 186000.00 Hole Type RO		
Locati	on:	Pontypridd	1				Level:	104.69	Scale 1:50		
Client:		Fulcrum In	frastru	cture Manageme	ent.		Dates:	04/05/2021 -	Logged B Dom Pric		
Well	Water			n Situ Testing	Depth	Level	Legend	Stratum Description			
X((X)	Strikes	Depth (m)	Туре	Results	(m)	(m)		·		-	
										=	
										11 —	
										=	
										12 —	
										13 —	
					13.50	91.19		One CANDOTONE with trace On the			
								Grey SANDSTONE with trace Coal Mudstone bands. [Hughes Member	and r].	=	
										14 —	
										=	
										15 —	
										16 -	
										17 —	
										18 —	
										19 =	
										=	
Dome	rke							Continued on next sheet		20 -	
Rema	1/2									_ !	

Groundwater strikes at 4.10m and 14.00m begl.

Borehole terminated at 30.50m.

									Borehole No.
\mathbf{n}	5	р				ole Log	R01		
con	sult	ing						5	Sheet 3 of 4
Projec	t Name:	Llanilltud F School	aerdre		Project No. C3103		Co-ords:	308657.00 - 186000.00	Hole Type RO
Locati	on:	Pontypridd					Level:	104.69	Scale 1:50
Client:		Fulcrum In	frastru	cture Manageme	ent.		Dates:	04/05/2021 -	Logged By Dom Price
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	
X(X)	Otrikes	Depth (m)	Туре	Results	(111)	(111)			
									=
									21 —
									22 —
									=
									23 —
									24 —
									=
									25 —
									= = = = = = = = = = = = = = = = = = = =
									26 —
									27 —
									-
									28 —
									20 _
									29 -
									30 —
Rema	rks							Continued on next sheet	

Borehole terminated at 30.50m.

Groundwater strikes at 4.10m and 14.00m begl.

h	C	n						ole Log	Borehole No.
11	3	P				R01			
con	sult				D : (N		T		Sheet 4 of 4
Projec	t Name:	Llanilltud F School	aerdre		Project No. C3103		Co-ords:	308657.00 - 186000.00	Hole Type RO
Locati	on:	Pontyprido	I				Level:	104.69	Scale 1:50
Client	nt: Fulcrum Infrastructure Managem		cture Manageme	ent.		Dates:	04/05/2021 -	Logged By Dom Price	
Well	Water Strikes	Samples Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	
		Dopur (III)	1960	reduito					-
					30.50	74.19		End of borehole at 30.50 m	<u>-</u>
									31 —
									32 —
									33 -
									34 —
									=
									35 —
									-
									36 —
									-
									37 —
									38 —
									39 -
									10
Rema	rks								40 —

Borehole terminated at 30.50m.

Groundwater strikes at 4.10m and 14.00m begl.

h	-	n							Borehole N	1 0.
	5	P			Borehole Log R02					
con	sult	ing							Sheet 1 of	f 4
Projec	t Name:	Llanilltud F School	aerdre	f Primary	Project No. C3103		Co-ords:	308649.00 - 186019.00	Hole Type RO	е
Locati	on:	Pontyprido	t				Level:	104.61	Scale 1:50	
Client		Fulcrum In	nfrastru	cture Manageme	ent.		Dates:	04/05/2021 -	Logged B Dom Pric	
Well	Water Strikes	Samples Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		Deptii (iii)	Туре	ivesuris	0.15	104.46		Brown sandy silty TOPSOIL with ma Brown sandy CLAY with occasional coarse angular to subrounded sand cobbles and gravels. [Diamicton Till	fine to stone	1 —
					1.70	102.91		Grey sandy CLAY with occasional fi angular to subrounded sandstone of gravels. [Diamicton Till].	ne to coarse obbles and	2 —
					2.70	101.91		Grey weathered MUDSTONE. [Hug Member].	hes	3 -
					5.10	99.51		Grey MUDSTONE. [Hughes Memb	er].	5
										8
								Continued on next sheet		10 —
Rema	rks					I.	1	Continued on next sheet	T	_

Borehole terminated at 30.50m.

Groundwater strike at 13.50m begl.

	•							Borehole N	No.	
11 2	<u>)</u>				R02					
consulti	ng					• • • • • • • • • • • • • • • • • • • •	ole Log	Sheet 2 of	Sheet 2 of 4	
Project Name:	Llanilltud Fa	erdref		Project No. C3103		Co-ords:	308649.00 - 186019.00	Hole Typ RO	е	
Location:	Pontypridd					Level:	104.61	Scale 1:50		
Client:	Fulcrum Infra	astruct	ture Manageme	ent.		Dates:	04/05/2021 -	Logged B Dom Pric		
Well Water Strikes		and In	Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description			
		, pe	results	13.70 16.80 17.10	90.91 87.81 87.51		Grey SANDSTONE with Mudstone to [Hughes Member]. Black COAL. [Hughes Member]. Grey SANDSTONE and MUDSTON trace Coal. [Hughes Member].		11 12 13 14 15 16 17 17 17 17 17 17 17	
Remarks							Continued on next sheet		19	

Remarks Borehole terminated at 30.50m.

Groundwater strike at 13.50m begl.

									Borehole No.
\mathbf{n}	5	р				Bo	reho	ole Log	R02
con	sult	ing							Sheet 3 of 4
Projec	t Name:	Llanilltud F School	aerdre		Project No. C3103		Co-ords:	308649.00 - 186019.00	Hole Type RO
Locati	on:	Pontypridd					Level:	104.61	Scale 1:50
Client:		Fulcrum In	frastru	cture Manageme	ent.		Dates:	04/05/2021 -	Logged By Dom Price
Well	Water			n Situ Testing	Depth	Level	Legend	Stratum Description	
X(X)	Strikes	Depth (m)	Туре	Results	(m)	(m)	:::::::	·	
									21 —
									21 -
									22 —
									-
									23 —
									-
									24 —
									- - - -
									25 —
									26 —
									27 —
									28 —
									29 _
Rema	rks							Continued on next sheet	30 -

Borehole terminated at 30.50m.

Groundwater strike at 13.50m begl.

h	ς	n				_1_1	Borehole No.		
0.0.0	oul+	D.C.				RO	reno	ole Log	R02
COI	sult			of Duine on a	Project No.		1	_	Sheet 4 of 4 Hole Type
Projec	t Name:	Llanilltud F School	aerure		C3103		Co-ords:	308649.00 - 186019.00	RO
Locati	on:	Pontyprido	l				Level:	104.61	Scale 1:50
Client				cture Manageme	ent.	ı	Dates:	04/05/2021 -	Logged By Dom Price
Well	Water Strikes	Samples Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	
			, , , , , , , , , , , , , , , , , , ,						-
20520)					30.50	74.11		End of borehole at 30.50 m	
									31 —
									32 —
									-
									-
									33 —
									-
									34 —
									35 <u>-</u>
									36 —
									37 —
									=
									38 —
									-
									39 —
									-
									40 —
Rema	rks								40

Borehole terminated at 30.50m.

h s	p			Во	reho	ole Log	R03 Sheet 1 of	
Project Name:	Llanilltud Faerdr	ef Primary	Project No.		Co-ords:	308692.00 - 186046.00	Hole Type	
Location:	School Pontypridd		C3103		Level:	103.89	RO Scale 1:50	
Client:	Fulcrum Infrastru	ucture Managem	nent.		Dates:	04/05/2021 -	Logged B	
Well Water	Samples and	In Situ Testing	Depth	Level	Lagand	Stratum Descriptio	1	е
Strikes	Depth (m) Type	Results	(m)	(m)	Legend	Stratum Description		
			2.30	103.69		Brown sandy silty TOPSOIL with no Brown sandy silty CLAY with fine to angular to subrounded sandstone cobbles. [Diamicton Till]. Grey MUDSTONE with occasional bands. [Hughes Member].	o coarse gravels and	1
								4 5 6 6
								8 - 9 10

Borehole terminated at 30.50m.

h	C	n				Borehole N	٧o.			
L.	2	Р				Bor	reho	ole Log	R03	
con	sult	ing						3	Sheet 2 of	f 4
Projec	t Name:	Llanilltud F School	aerdre	ef Primary	Project No. C3103		Co-ords:	308692.00 - 186046.00	Hole Typ RO	е
Locati	on:	Pontypridd	I				Level:	103.89	Scale 1:50	
Client:		Fulcrum In	frastru	cture Manageme	ent.		Dates:	04/05/2021 -	Logged B Dom Pric	
Well	Water Strikes	Samples Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		Deptil (III)	туре	Results		,				_
										_
										=
										11 =
										_
										12 —
										=
										13 —
										=
										_
										14 =
										=
										_
										15 —
					15.10	88.79		Black COAL. [Hughes Member].		
					15.40	88.49		Grey MUDSTONE with Sandstone [Hughes Member].	bands.	1 -
								[Hughes Member].		
										16 —
										_
										17 —
					17.40	86.49				
					17.50 17.70	86.39 86.19		Black COAL. [Hughes Member]. Grey MUDSTONE. [Hughes Memb	er].	1 1
					17.70	30.19		Grey SANDSTONE. [Hughes Mem	nber].	18 —
										10 -
										=
										19 =
										=
								Continued on next sheet		20 —
Rema		inated at 30 5	:Om	Operinalis:-4	ar strike at 13	50m b==!	1	Command on more sheet		

Borehole terminated at 30.50m.

									Borehole No.
	5	р				Bo	reho	ole Log	R03
con	sult	ing						3	Sheet 3 of 4
Projec	t Name:	Llanilltud F School	aerdre		Project No. C3103		Co-ords:	308692.00 - 186046.00	Hole Type RO
Locati	on:	Pontypridd					Level:	103.89	Scale 1:50
Client:		Fulcrum In	frastru	cture Manageme	ent.		Dates:	04/05/2021 -	Logged By Dom Price
Well	Water Strikes			n Situ Testing	Depth	Level	Legend	Stratum Description	
X(X)	Suikes	Depth (m)	Туре	Results	(m)	(m)			
									=
									21 —
									22 —
									-
									23 =
									24 —
									24 -
									-
									25 —
									=
									26 _
									=
									-
									27 —
									28 -
									29 —
									-
Rema	rks							Continued on next sheet	30 -

Borehole terminated at 30.50m. Groundwater strike at 13.50m begl.

AGS

h	C	n					Borehole No.		
44	2	<u> </u>				Roi	reho	ole Log	R03
con	sult			-f Daine and	Project No.		1	_	Sheet 4 of 4 Hole Type
Projec	t Name:	Llanilltud F School	-aerure		C3103		Co-ords:	308692.00 - 186046.00	RO
Locati	on:	Pontyprido	i				Level:	103.89	Scale 1:50
Client:		Fulcrum In	ıfrastru	cture Manageme	ent.		Dates:	04/05/2021 -	Logged By Dom Price
Well	Water Strikes	Samples Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	
XXX		Deptii (iii)	Турс	resuits					
<i>3</i> 5535					30.50	73.39		End of borehole at 30.50 m	
									31 —
									-
									32 —
									33 —
									-
									34 —
									35 —
									36 —
									37
									38 —
									39 —
									-
Rema	rks								40 —
. Cilia									

Borehole terminated at 30.50m.

											Borehole N	lo.
n S D consulting							R	ota	ry C	Core Log	R04	
con	sulti	ng							<i>J</i>	0	Sheet 1 of	4
Proiec	t Name:	Llanilltud	Faerdre	ef Prim	ary		oject No.		Co-ords:	308686.00 - 186004.00	Hole Type	е
		School				C3	3103				RO	
Locati	on:	Pontyprid	d						Level:	104.23	Scale 1:50	
											Logged B	By
Client:		Fulcrum I	nfrastru	icture I	Manag	ement.			Dates:	04/05/2021 -	Dom Pric	
10/-11	Water	Depth	Туре		Coring)	Depth	Level	Lawand	Ctrature Decembries		
Well	Strikes	(m)	/FI	TCR	SCR	RQD	(m)	(m)	Legend	Stratum Description		
							0.20	104.03		Brown sandy silty TOPSOIL with occurrootlets.	casional	_
							0.20	104.00		Brown sandy silty CLAY fine to coars	se	1 =
										sandstone gravel. [Diamicton Till].		=
												-
												1 -
												-
												-
												_
												2 -
												-
												_
												3 -
												-
							3.50	100.73		Grey sandy CLAY with fine to coarse	e angular to	1 =
										subrounded gravels and cobbles. [D Till].	lamicion	-
												4 -
												-
												-
												_ =
												5 -
							5.40	98.83		Grey weathered fractured MUDSTO	NE	=
										[Hughes Member].	IVE.	-
												6 -
												-
												=
												-
												7 -
												-
												=
												-
												8 -
												-
]
												-
												9 -
	1											-
ロロプラフリラ												_
												-
												10 —

Borehole terminated at 30.50m.

L	-	n							Borehole N	۱o.
	5	р				Bo	reho	ole Log	R04	
con	sult	ing							Sheet 1 of	f 4
Projec	t Name:	Llanilltud F School	aerdre	ef Primary	Project No. C3103		Co-ords:	308686.00 - 186004.00	Hole Typ	е
Locati	on:	Pontypridd	I		100,000		Level:	104.23	Scale 1:50	
Client:		Fulcrum In	frastru	cture Manageme	ent.		Dates:	04/05/2021 -	Logged B	
Well	Water	Samples	s and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
VVCII	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legenu			
					0.20	104.03		Brown sandy silty TOPSOIL with oc rootlets. Brown sandy silty CLAY fine to coar	,	
								sandstone gravel. [Diamicton Till].	30	
										1 -
										=
										=
										2 —
										-
										3 —
					3.50	100.73		Grey sandy CLAY with fine to coars	e angular to	
								subrounded gravels and cobbles. [ETill].	Diamicton	-
										4 -
										=
										-
										5 —
					5.40	98.83		Grey weathered fractured MUDSTC	DNE.	
								[Hughes Member].		
										6 —
										-
										- -
										7 -
										-
										8 =
										9 =
										-
X								Continued on next sheet		10 —
Rema	rks					I	1	Continued on next sheet		

Groundwater strike at 13.00m begl.

Borehole terminated at 30.50m.

b		n					Borehole N	No.		
n	5	р				Bo	reho	ole Log	R04	
con	sult	ing						J. G _ G _ G	Sheet 2 of	f 4
Projec	t Name:	Llanilltud F	aerdre	ef Primary	Project No. C3103		Co-ords:	308686.00 - 186004.00	Hole Type RO	
Locati	on:	Pontyprido	ł				Level:	104.23	Scale 1:50	
Client:		Fulcrum In	ıfrastru	ıcture Manageme	ent.		Dates:	04/05/2021 -	Logged B Dom Pric	
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	•	
X(X)	Otrikes	Depth (m)	Туре	Results	(111)	(111)				_
										-
										11 —
										-
										12 —
										- -
										13 —
					13.20	91.03		Grey SANDSTONE with occasional bands and trace Coal. {Hughes Me	Mudstone	
								bands and trace Coal. (Hughes Me	mberj.	-
										14 =
										-
										-
										15 =
										- - -
										16 -
										-
										17 —
										-
										18 —
										10 -
										19 —
								Continued on next sheet		20 —
Rema	rks	I		1		I.	1	Gorialized on next sliebt		_

Groundwater strike at 13.00m begl.

Borehole terminated at 30.50m.

									Borehole No.
	5	р				Bo	reho	ole Log	R04
con	sult	ing						3	Sheet 3 of 4
Projec	t Name:	Llanilltud F School	aerdre		Project No. C3103		Co-ords:	308686.00 - 186004.00	Hole Type RO
Locati	on:	Pontypridd					Level:	104.23	Scale 1:50
Client:		Fulcrum In	frastru	cture Manageme	ent.		Dates:	04/05/2021 -	Logged By Dom Price
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	
X(X)	Ottikes	Depth (m)	Туре	Results	(111)	(111)			
									21 —
									22 —
									23 —
									24 —
									24
									25 —
									26 —
									-
									27 —
									28 —
									29 —
Rema	rks							Continued on next sheet	30 -

Borehole terminated at 30.50m. Groundwater strike at 13.00m begl.

b	-	n						Borehole No.		
	5	P				Boi	reho	ole Log	R04	
con	sult	ing						9	Sheet 4 of 4	
Projec	t Name:	Llanilltud F School	aerdre	ef Primary	Project No. C3103		Co-ords:	308686.00 - 186004.00	Hole Type RO	
Locati	on:	Pontypridd	I				Level:	104.23	Scale 1:50	
Client:		Fulcrum In	frastru	icture Manageme	ent.		Dates:	04/05/2021 -	Logged By Dom Price	
Well	Water Strikes			In Situ Testing	Depth (m)	Level	Legend	Stratum Description		
VVCII	Strikes	Depth (m)	Туре	Results	(m) 30.50	(m) 73.73		End of borehole at 30.50 m	3:	2
									30	6 —
										- - -
									3	7 —
									34	8 - -
									3:	9 -
D-::	ulca.								40	0 —
Remai		inated at 30 5	:0m	Croundwata	r etrika at 13	00m boal				

Borehole terminated at 30.50m.

h	-	n					Borehole N	10.		
Ш	5	P				Boi	reho	ole Log	R05	
con	sult	ing						2.0 _09	Sheet 1 of	4
Projec	t Name:	Llanilltud F School	aerdre	ef Primary	Project No. C3103		Co-ords:	308692.00 - 186017.00	Hole Type RO	е
Locati	on:	Pontyprido	t				Level:	104.39	Scale 1:50	
Client		Fulcrum Ir	nfrastru	cture Manageme	ent.		Dates:	04/05/2021 -	Logged B Dom Pric	
Well	Water Strikes	Sample: Depth (m)	s and I	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		Deptil (III)	Туре	Results	0.20	104.19		Brown sandy silty TOPSOIL with occorrootlets.	,	
								Brown sandy silty CLAY fine to coar sandstone gravels and cobbles. [Di	se amicton Till].	=
										1 -
										2 -
										_ _ _
										3 —
					3.20	101.19		Grey CLAY with fine to coarse grave weathered Mudstone. [Diamicton Ti	els of	
								weathered industries. [Diamicon 11].	_ _ _
										4 =
					4.30	100.09		Grey MUDSTONE. [Hughes Member	er].	
										5 —
										6 -
										7 —
										8 =
										9 —
								Continued an about about		10 —
Rema	rks					<u> </u>		Continued on next sheet		

Borehole terminated at 30.50m..

h	C	n					Borehole No	0.		
	2	P				Boi	reho	ole Log	R05	
con	sult	ing							Sheet 2 of 4	4
Projec	t Name:	Llanilltud F School	aerdre	ef Primary	Project No. C3103		Co-ords:	308692.00 - 186017.00	Hole Type RO	!
Location	on:	Pontypridd	I				Level:	104.39	Scale 1:50	
Client:		Fulcrum In	frastru	cture Manageme	ent.		Dates:	04/05/2021 -	Logged By Dom Price	
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
		Depth (m)	Туре	Results	()	()				-
										-
										11 —
					11.40	92.99		Grey SANDSTONE with occasional	Mudetone	-
								bands. [Hughes Member].	Mudstone	-
										12 -
										13 —
										-
					14.20	90.19		Dark grey MUDSTONE with occasion		14 -
								bands. [Hughes Member].		_
										15 =
					15.40	88.99		Grey SANDSTONE with Mudstone I	pands and	-
								Grey SANDSTONE with Mudstone I trace Coal. [Hughes Member].		-
									ľ	16 —
										-
										17 -
										10
										18 — - -
										-
										19 -
										-
										- - - -
Remai	rks							Continued on next sheet		20 —

Borehole terminated at 30.50m.. Groundwater strike at 9.90m begl.

									Borehole No.
n	5	р				Bo	reho	ole Log	R05
con	sult	ing						5	Sheet 3 of 4
Projec	t Name:	Llanilltud F School	aerdre		Project No. C3103		Co-ords:	308692.00 - 186017.00	Hole Type RO
Locati	on:	Pontypridd					Level:	104.39	Scale 1:50
Client:		Fulcrum In	frastru	cture Manageme	ent.		Dates:	04/05/2021 -	Logged By Dom Price
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	
X(X)	Ottikes	Depth (m)	Туре	Results	(111)	(111)			
									=
									21 —
									22 —
									23 —
									=
									24 —
									24 _
									25 —
									26 —
									=
									1
									27 —
									28 —
									29 —
Rema	rks							Continued on next sheet	30 -

Borehole terminated at 30.50m.. Groundwater strike at 9.90m begl.

h	ς	n					!	-1-1	Borehole No.		
000	oult.	<u> </u>				RO	reno	ole Log	R05		
	sult	I lawilltural F		of Duine on a	Project No.		1		Sheet 4 of 4 Hole Type		
Projec	t Name:	Llanilltud F School	-aerore		C3103		Co-ords:	308692.00 - 186017.00	RO		
Locati	on:	Pontyprido	l				Level:	104.39	Scale 1:50		
Client				cture Manageme	ent.	Γ	Dates:	04/05/2021 -	Logged By Dom Price		
Well	Water Strikes	Samples Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description			
									-		
					30.50	73.89		End of borehole at 30.50 m]		
									31 —		
									32 —		
									33 —		
									34 —		
									34 _ _ _ -		
									35 —		
									36 —		
									<u>-</u>		
									37 -		
									38 -		
									39 —		
									40		
Rema	rks										

Borehole terminated at 30.50m..

									Borehole N	lo.
n	S	p				Bo	reha	ole Log	WS01	
con	sult	ing					. •	3.0 _09	Sheet 1 of	1
Projec	t Name:	Llanilltud F	aerdre		Project No. C3103		Co-ords:	308667.00 - 185992.00	Hole Type WS	
Locati	on:	Pontyprido	d	1			Level:	104.50	Scale 1:50	
Client:		Fulcrum In	nfrastru	ıcture Managemei	nt.		Dates:	21/04/2021 -	Logged B H Brown	
Well	Water Strikes		1	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
591 155	Strikes	Depth (m) 0.15	Type TJ	Results	(111)	(111)	\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Dark brown alightly condy alightly gr	covally alayay	
		0.15	TJ		0.20	104.30		Dark brown slightly sandy slightly gr TOPSOIL.	/	1
								Firm brown grey mottled sandy graved is fine to coarse angular of n [Diamicton Till].	relly CLAY. nudstone.	-
		0.80 1.00	В	N=16 (2,4/5,4,3,4)	,					1 -
		1.00 - 1.45	D	14 10 (2, 170, 1,0, 1		400.00				
		1.50	В		1.30	103.20		Stiff grey mottled brown slightly san CLAY. Gravel is fine to coarse angu	dy gravelly	
		1.80		N=50 /25 for				mudstone. [Diamicton Till].	iai oi	=
				N=50 (25 for 55mm/50 for 245mr	m)					2 —
		1.80 - 2.20	D		2.25	102.25		End of borehole at 2.25 m		. =
								End of borefiole at 2.25 m		_
										3 —
										_
										4 –
										_
										_
										5 —
										_
										_
										6 —
										_
										7 —
										=
										=
										8 —
										-
										9 -
										=
										10 —
Rema	rks			ı		1				-

Borehole was terminated at 2.25m begl due to refusal.

Soil was recorded as damp at 1.50m begl.

Consulting	h	-	n						Borehole No.		
Sheet 1 of 1 Shee		5	Р				Bo	reho	ole Loa	WS02	
Color Pontypridd	con	sult	ing						J	Sheet 1 of	1
Client Fundament Client Fundament Fundament Client Fundament Fundament Client Fundament Fundament Fundament Client Fundament Fundament Fundament Fundament Client Fundament Fundament	Projec	t Name:		aerdre				Co-ords:	308658.00 - 186011.00		Э
Well Water Samples and in Situ Testing Sirkes Doptim Type Results O.10 TJ O.40 T	Location	on:	Pontyprido	d				Level:	104.63		
Strikes Depth (m) Type Results (m) (m) (egend Striketin Depth known slightly sandy Lightly gravely Clay (proposed as and parallel striketin shown in the striketin sh	Client:		Fulcrum Ir	nfrastru	ıcture Manageme	nt.		Dates:	21/04/2021 -		-
10	Well						1	Legend	Stratum Description	1	
0.40	X(X)	Ollikes		1	Results				MADE GROUND - Dark brown sligh	ntly sandy	_
0.95									Stiff brown mottled grey with black signavelly CLAY. Gravel is fine to coal	rse sub-	_ _ _
2.00			1.00 1.00 - 1.45	D	N=26 (2,5/4,7,7,8		103.73		fragments. [Diamicton Till]. Stiff grey yellowish brown mottled b	rown slightly	1 -
2.80				В	N=33 (3 4/5 8 9 1	1) 2.05	402.50				2 —
2.80 - 3.25 D 200mm) 3.25 101.38 CLAY (Hughes Member). CLAY (Hughes Member). Find of borehole at 3.25 m 4			2.00 - 2.45			2.05	102.58		Very stiff grey gravelly slightly sand [Diamicton Till].	y CLAY.	- - - - -
3.25 101.38 End of borehole at 3.25 m 4 -					50 (7,6/50 for 200mm)	2.80	101.83			ed as gravelly	3 =
5 - 1 - 1 - 2 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4			2.00 - 0.20			3.25	101.38	· · · · · · ·	End of borehole at 3.25 m		- - -
5 - 1 - 1 - 2 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4											-
											4 -
											- - -
8 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1											5 -
8 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1											_ _ _
											6 -
											_ _ _
											7 -
											- - -
											8 -
											- - -
											9 —
	Remai	rks									10 —

Borehole was terminated at 3.25m begl due to refusal

									Borehole N	lo.
n	S	p				Bo	reho	ole Log	WS03	}
con	sult	ing					. •	J.G – G	Sheet 1 of	1
Projec	t Name:	Llanilltud F	aerdre		Project No.		Co-ords:	308655.00 - 186032.00	Hole Type WS	Э
Locati	on:	Pontyprido	i				Level:	104.61	Scale 1:50	
Client:		Fulcrum In	ıfrastru	ıcture Managemei	nt.		Dates:	21/04/2021 -	Logged B H Brown	
Well	Water	Samples	s and	In Situ Testing	Depth	Level	Legend	Stratum Description	1	
vveii	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description	ı	
		2.00 2.00 2.00 2.00 - 2.45 2.85 3.00 3.00 - 3.45	TJ TJ B D B D	N=22 (3,4/6,5,5,6) N=36 (6,8/6,11,9,10) N=50 (5,8/50 for 290mm)	0.15	104.46 103.21 101.81 101.36 101.16		MADE GROUND - Dark brown slig slightly gravelly clayey topsoil. Stiff brown mottled grey with black gravelly CLAY. Gravel is fine to coa angular to angular of mixed litholog fragments. [Diamicton Till]. Stiff grey yellowish brown mottled be sandy gravelly CLAY. [Diamicton Till]. Very stiff dark grey gravelly slightly [Diamicton Till]. Extremely weak mudstone recover. CLAY. [Hughes Member]. End of borehole at 3.45 m	spots sandy irse sub- jies and coal prown slightly II]. sandy CLAY.	3 3 4 7 8 9 1 9 1 1 1 1 1 1 1
Rema										10 —

Borehole was terminated at 3.45m begl due to refusal.

Soil was recorded as damp at 1.60m begl.

h	Sult	p ing				Во	reho	ole Log	Borehole N WS04 Sheet 1 of	1
Project	Name:	Llanilltud F School	aerdre		Project No. C3103		Co-ords:	308675.00 - 186040.00	Hole Typ	
ocatio	n:	Pontyprido	d	1			Level:	104.12	Scale 1:50	
lient:		Fulcrum Ir	nfrastru	ıcture Managemer	nt.		Dates:	21/04/2021 -	Logged B H Brown	-
Nell	Water Strikes	Sample: Depth (m)	Type	In Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		0.20 0.55 0.60 1.00 1.00 - 1.45 1.20	TJ TJ B D B	N=13 (2,3/3,4,3,3)	1.20	103.87		MADE GROUND - Dark brown slig slightly gravelly clayey topsoil. Stiff brown mottled grey with black gravelly CLAY. Gravel is fine to coangular to angular of mixed litholog fragments. 0.25m-0.35m Very sandy gravelly [Diamicton Till]. Stiff grey mottled yellow brown slig gravelly CLAY. Gravel is fine to coangular of mixed lithologies includifragments. [Diamicton Till].	spots sandy arse sub- gies and coal CLAY band.	1
	2.00	2.00 2.00 - 2.45 3.00 3.00 - 3.45 3.50	D	N=36 (3,5/7,9,12,8 N=30 (8,10/5,8,10,7) 50 (25 for 15mm/5)	2.80	101.32		Stiff grey gravelly slightly sandy C [Diamicton Till].	LAY.	3
		3.80 4.00	B D	for 20mm)	3.90 4.15	100.22 99.97		Extremely weak MUDSTONE. [Hu Member]. End of borehole at 4.15 n		4
										5
										6
										7
										8
										9
										10

Remarks
Borehole was terminated at 4.15m begl due to refusal.

Soil was recorded as damp at 2.20m begl.

h	Sult	p ing				Во	reho	ole Log	Borehole N WS05 Sheet 1 of	5
Projec	t Name:	Llanilltud F School	aerdre	,	Project No. C3103		Co-ords:	308678.00 - 186043.00	Hole Type WS	е
_ocati	on:	Pontyprido	d				Level:	103.80	Scale 1:50	
Client		Fulcrum Ir	ıfrastru	cture Manageme	nt.		Dates:	21/04/2021 -	Logged B H Brown	-
Well	Water Strikes			n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
Well		Depth (m) 0.10 0.30 0.85 0.90 1.00 1.00 - 1.45 1.20 1.90 2.00 2.00 - 2.45 2.70 3.00 3.00 - 3.45	Type TJ B B D B	Results N=21 (4,4/5,7,5,4 N=17 (3,4/2,4,4,7 N=50 (4,7/50 for 235mm)	(m) 0.15 0.80) 1.70		Legend	Stratum Description MADE GROUND - Dark brown slig slightly gravelly clay topsoil. MADE GROUND - Brown grey mo brown sandy gravelly clay. Gravel coarse sub-rounded to angular of lithologies including coal. Stiff brown mottled grey sandy gra Gravel is fine to coarse angular of [Diamicton Till] Stiff grey mottled yellow brown slig gravelly CLAY. Gravel is fine to coarse angular of mixed lithologies includifragments. [Diamicton Till] Extremely weak MUDSTONE. [Hu Member]. End of borehole at 3.45 m	ghtly sandy ottled yellowish is fine to mixed velly CLAY. mudstone. ghtly sandy arse sub ing coal	3
										9 -

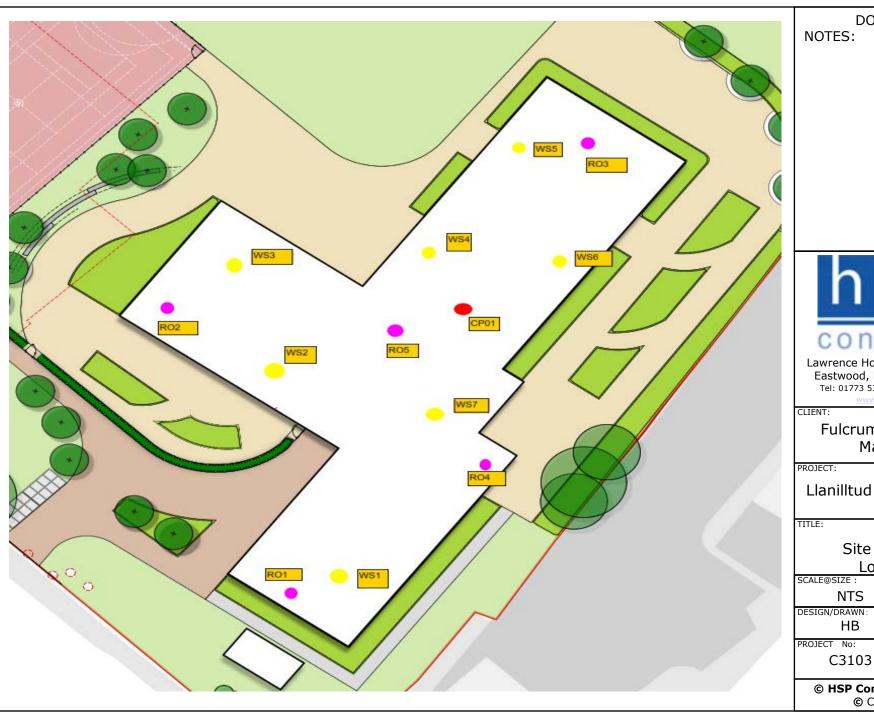
Remarks
Borehole was terminated at 3.45m begl due to refusal.

Groundwater was encountered at 1.80m begl.

h	Sult	p Ing				Во	reho	ole Log	WS06	;
rojec	t Name:	Llanilltud F	aerdre		Project No. C3103		Co-ords:	308687.00 - 186030.00	Hole Type WS	
ocati	on:	Pontyprido	ď				Level:	103.70	Scale 1:50	
lient:		Fulcrum Ir	ıfrastru	ıcture Manageme	nt.		Dates:	21/04/2021 -	Logged B H Brown	-
Vell	Water	Samples	s and	In Situ Testing	Depth	Level	Legend	Stratum Descriptio	n	
VCII	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	•		
		0.20	TJ		0.15	103.55		MADE GROUND - Dark brown slig slightly gravelly clay topsoil.	/	
		0.50 0.60	TJ B					MADE GROUND - Brown grey mo brown sandy gravelly clay. Gravel coarse sub-rounded to angular of	is fine to	
		0.95 1.00 1.00 - 1.45	TJ D	N=17 (5,2/4,4,5,4	0.90	102.80		lithologies including coal. Stiff brown mottled grey sandy gra Gravel is fine to coarse angular of [Diamicton Till].	velly CLAY. mudstone.	1
		1.10	В		1.50	102.20		Stiff grey mottled yellow brown slig gravelly CLAY. Gravel is fine to coa angular of mixed lithologies includi	arse sub	
		2.00 2.00 - 2.45 2.40	D B	N=21 (2,4/5,6,5,5	2.10	101.60		fragments. [Diamicton Till] Firm grey mottled black very sand Gravel is fine to coarse sub-angula mixed lithologies including coal fra	ar to angular of	_ 2
		3.00		N=34 (6,5/8,7,10,9	3.00	100.70		[Diamicton Till] No recove 2.60m-3.00m Very stiff grey mottled brown slight	ry	3
		3.00 - 3.45	D		3.45	100.25		gravelly CLAY. Gravel is fine to coa angular to angular of mudstone. [H Member].	arse sub- lughes	,
										6
										7
										8
										9
										10

Borehole was terminated at 3.45m begl due to borehole collapse. Groundwater was encountered at 2.50m begl.

No recovery between 2.60m and 3.00m begl.



Cile									Borehole N	lo.
Co-ords Co-o	n s					Bo	reho	ole Loa	WS07	,
Client School C3103	consu	ılting					. •	J. J	Sheet 1 of	1
Claim Full Continue Full	Project Na		Faerdr).	Co-ords:	308669.00 - 186017.00		е
Vicinity Vicinity	Location:	Pontypride	d				Level:	103.99		
Strikes Depth (m) Type Results (m) (m) (m)	Client:	Fulcrum li	nfrastru	ucture Manageme	ent.		Dates:	21/04/2021 -		
0.10			1				Legend	Stratum Description		
		Depth (m) 0.10 0.60 0.70 1.00 1.00 - 1.45 1.30 2.00 2.00 - 2.45 2.20 2.80	Type TJ B D B	Results N=32 (4,6/5,11,10 N=30 (3,6/8,7,7,8	(m) 0.15 ,6) 1.40 1.90	(m) 103.84 102.59 102.09	Legend Control of the	MADE GROUND - Dark brown slight slightly gravelly clay topsoil. Brown mottled grey sandy gravelly is fine to coarse angular of mudstor [Diamicton Till] Stiff grey mottled yellow brown slight gravelly CLAY. Gravel is fine to coar angular of mixed lithologies includin fragments. [Diamicton Till]. Stiff grey mottled black very sand gravel is fine to coarse sub-angular mixed lithologies including coal frag [Diamicton Till].	atly sandy CLAY. Gravel atly sandy se sub g coal avelly CLAY.	3
										8 -
										9 —
	Remarks									10 —

Borehole was terminated at 3.25m due to refusal.

Appendix III

DO NOT SCALE NOTES:

Lawrence House, Meadowbank Way, Eastwood, Nottingham, NG16 3SB Tel: 01773 535 555 Fax: 0870 600 6091

Fulcrum Infrastructure Management

Llanilltud Faerdref Primary School

> Site Investigation Location Plan

	,
SCALE@SIZE:	ISSUE:
NTS	FINAL
DESIGN/DRAWN: HB	May 2021
PROJECT No:	DRAWING No:
C3103	002

© HSP Consulting Engineer Ltd © Crown Copyright.

Appendix IV

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 21-13333-1

Initial Date of Issue: 04-May-2021

Client HSP Consulting Engineers Limited

Client Address: Lawrence House

Meadowbank Way

Eastwood

Nottinghamshire

NG16 3SB

Contact(s): Hallam Brown

Laura Jones

Project C3103 Llanilltud Faedref Primary

School

Quotation No.: Date Received: 23-Apr-2021

Order No.: SC13672 Date Instructed: 27-Apr-2021

No. of Samples: 13

Turnaround (Wkdays): 5 Results Due: 04-May-2021

Date Approved: 04-May-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Project: C3103 Lianilitud Faedret Prima	iry School												
Client: HSP Consulting Engineers		Che	mtest J	oh No ·	21-13333	21-13333	21-13333	21-13333	21-13333	21-13333	21-13333	21-13333	21-13333
Limited						21-10000	21-10000	21-10000	21-10000	21-13333	21-10000	21-10000	21-10000
Quotation No.:	(Chemte	est Sam	ple ID.:	1186023	1186024	1186028	1186030	1186032	1186036	1186038	1186044	1186046
Order No.: SC13672			nt Samp		WS01	WS01	WS02	WS02	WS03	WS03	WS04	WS05	WS05
		S	ample Lo	ocation:	WS01	WS01	WS02	WS02	WS03	WS03	WS04	WS05	WS05
			Sampl	e Type:	SOIL	SOIL							
			Top De		0.3	1	0.95	2	0.2	3	0.55	0.3	1
		Во	ttom De	pth (m):		1.45		2.45		3.45			1.45
			Date Sa	ampled:	21-Apr-2021	21-Apr-2021							
			Asbest	os Lab:								COVENTRY	
Determinand	Accred.	SOP		LOD									
ACM Type	U	2192		N/A								-	
Asbestos Identification	U	2192		N/A								No Asbestos Detected	
ACM Detection Stage	U	2192		N/A								-	
Moisture	N	2030	%	0.020	10	9.0	13	8.4	12	8.6	13	17	9.4
pH	U	2010		4.0	6.4	6.1	6.6	6.1	7.8	7.7	6.8	7.3	6.4
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	< 0.40		< 0.40		< 0.40		< 0.40	< 0.40	
Sulphate (2:1 Water Soluble) as SO4	U	2120		0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Total Sulphur	U	2175	%	0.010		0.026		0.28		0.034			0.018
Sulphur (Elemental)	U	2180	mg/kg	1.0	5.1		< 1.0		< 1.0		< 1.0	< 1.0	
Cyanide (Free)	U	2300	mg/kg	0.50	< 0.50		< 0.50		< 0.50		< 0.50	< 0.50	
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50		< 0.50		< 0.50		< 0.50	< 0.50	
Sulphide (Easily Liberatable)	N	2325		0.50	< 0.50		< 0.50		< 0.50		0.53	0.57	
Sulphate (Acid Soluble)	U	2430		0.010		0.016		0.71		0.040			0.022
Arsenic	U	2450	-	1.0	6.9		2.1		9.1		5.9	8.6	
Cadmium	U	2450		0.10	< 0.10		< 0.10		< 0.10		< 0.10	0.10	
Chromium	U	2450		1.0	15		14		16		12	16	
Copper	U	2450		0.50	22		26		16		15	13	
Mercury	U	2450		0.10	< 0.10		< 0.10		< 0.10		< 0.10	< 0.10	
Nickel	U	2450	mg/kg	0.50	16		21		18		13	14	
Lead	U	2450		0.50	14		12		14		8.2	18	
Selenium	U	2450		0.20	0.25		0.22		0.39		0.24	0.91	
Zinc	U	2450	mg/kg	0.50	48		50		43		34	42	
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50		< 0.50		< 0.50		< 0.50	< 0.50	
Organic Matter	U	2625		0.40	0.86		0.72		1.9		0.47	2.9	
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Aliphatic TPH >C10-C12	U	2680		1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Aliphatic TPH >C21-C35	U	2680		1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0		< 5.0	İ	< 5.0		< 5.0	< 5.0	
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0		< 1.0	İ	< 1.0		< 1.0	< 1.0	
Aromatic TPH >C7-C8	N	2680		1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
	-												

Client: HSP Consulting Engineers		Chamtast Jah Na	24 42222	24 42222	24 42222	04 40000	24 42222	04 40000	04 40000	24 42222	04 40000
Limited		Chemtest Job No.	21-13333	21-13333	21-13333	21-13333	21-13333	21-13333	21-13333	21-13333	21-13333
Quotation No.:		Chemtest Sample ID.	1186023	1186024	1186028	1186030	1186032	1186036	1186038	1186044	1186046
Order No.: SC13672		Client Sample Ref.	WS01	WS01	WS02	WS02	WS03	WS03	WS04	WS05	WS05
		Sample Location	WS01	WS01	WS02	WS02	WS03	WS03	WS04	WS05	WS05
		Sample Type	SOIL								
		Top Depth (m)	0.3	1	0.95	2	0.2	3	0.55	0.3	1
		Bottom Depth (m)		1.45		2.45		3.45			1.45
		Date Sampled	21-Apr-2021	21-Apr-2021	21-Apr-2021	21-Apr-2021	21-Apr-2021	21-Apr-2021	21-Apr-2021	21-Apr-2021	21-Apr-2021
		Asbestos Lab								COVENTRY	
Determinand	Accred.	SOP Units LOD									
Aromatic TPH >C8-C10	U	2680 mg/kg 1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Aromatic TPH >C10-C12	U	2680 mg/kg 1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Aromatic TPH >C12-C16	U	2680 mg/kg 1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Aromatic TPH >C16-C21	U	2680 mg/kg 1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Aromatic TPH >C21-C35	U	2680 mg/kg 1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Aromatic TPH >C35-C44	N	2680 mg/kg 1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Total Aromatic Hydrocarbons	N	2680 mg/kg 5.0	< 5.0		< 5.0		< 5.0		< 5.0	< 5.0	
Total Petroleum Hydrocarbons	N	2680 mg/kg 10.0	< 10		< 10		< 10		< 10	< 10	
Naphthalene	U	2700 mg/kg 0.10	< 0.10		< 0.10		< 0.10		< 0.10	< 0.10	
Acenaphthylene	U	2700 mg/kg 0.10	< 0.10		< 0.10		< 0.10		< 0.10	< 0.10	
Acenaphthene	U	2700 mg/kg 0.10	< 0.10		< 0.10		< 0.10		< 0.10	< 0.10	
Fluorene	U	2700 mg/kg 0.10	< 0.10		< 0.10		< 0.10		< 0.10	< 0.10	
Phenanthrene	U	2700 mg/kg 0.10	< 0.10		< 0.10		< 0.10		< 0.10	< 0.10	
Anthracene	U	2700 mg/kg 0.10	< 0.10		< 0.10		< 0.10		< 0.10	< 0.10	
Fluoranthene	U	2700 mg/kg 0.10	< 0.10		< 0.10		< 0.10		< 0.10	< 0.10	
Pyrene	U	2700 mg/kg 0.10	< 0.10		< 0.10		< 0.10		< 0.10	< 0.10	
Benzo[a]anthracene	U	2700 mg/kg 0.10	< 0.10		< 0.10		< 0.10		< 0.10	< 0.10	
Chrysene	U	2700 mg/kg 0.10	< 0.10		< 0.10		< 0.10		< 0.10	< 0.10	
Benzo[b]fluoranthene	U	2700 mg/kg 0.10	< 0.10		< 0.10		< 0.10		< 0.10	< 0.10	
Benzo[k]fluoranthene	U	2700 mg/kg 0.10	< 0.10		< 0.10		< 0.10		< 0.10	< 0.10	
Benzo[a]pyrene	U	2700 mg/kg 0.10	< 0.10		< 0.10		< 0.10		< 0.10	< 0.10	
Indeno(1,2,3-c,d)Pyrene	U	2700 mg/kg 0.10	< 0.10		< 0.10		< 0.10		< 0.10	< 0.10	
Dibenz(a,h)Anthracene	U	2700 mg/kg 0.10	< 0.10		< 0.10		< 0.10		< 0.10	< 0.10	
Benzo[g,h,i]perylene	U	2700 mg/kg 0.10	< 0.10		< 0.10		< 0.10		< 0.10	< 0.10	
Total Of 16 PAH's	U	2700 mg/kg 2.0	< 2.0		< 2.0		< 2.0		< 2.0	< 2.0	
Benzene	U	2760 μg/kg 1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Toluene	U	2760 μg/kg 1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Ethylbenzene	U	2760 μg/kg 1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
m & p-Xylene	U	2760 μg/kg 1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
o-Xylene	U	2760 μg/kg 1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Methyl Tert-Butyl Ether	U	2760 μg/kg 1.0	< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	
Total Phenols	U	2920 mg/kg 0.10	< 0.10		< 0.10		< 0.10		< 0.10	< 0.10	

Client: HSP Consulting Engineers Limited		Che	mtest J	ob No.:	21-13333	21-13333	21-13333	21-13333
Quotation No.:		Chemte	st Sam	ple ID.:	1186050	1186051	1186053	1186056
Order No.: SC13672			nt Samp		WS06	WS06	WS06	WS07
		Sa	ample Lo	ocation:	WS06	WS06	WS06	WS07
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL
			Top De	oth (m):	0.5	0.95	2	0.6
		Bot	tom De	oth (m):			2.45	
			Date Sa	ampled:	21-Apr-2021	21-Apr-2021	21-Apr-2021	21-Apr-202
			Asbest	os Lab:	COVENTRY			
Determinand	Accred.	SOP	Units	LOD				
ACM Type	U	2192		N/A	ı			
Asbestos Identification	U	2192		N/A	No Asbestos Detected			
ACM Detection Stage	U	2192		N/A	=			
Moisture	N	2030	%	0.020	19	10	10	12
pH	Ü	2010		4.0	6.9	6.3	6.6	5.9
Boron (Hot Water Soluble)	Ü	2120	mg/kg	0.40	< 0.40	< 0.40	1.0	< 0.40
Sulphate (2:1 Water Soluble) as SO4	Ü	2120	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010
Total Sulphur	Ü	2175	%	0.010			0.011	
Sulphur (Elemental)	Ü	2180	mg/kg	1.0	< 1.0	< 1.0		< 1.0
Cyanide (Free)	Ü	2300	mg/kg	0.50	< 0.50	< 0.50		< 0.50
Cyanide (Total)	Ü	2300	mg/kg	0.50	< 0.50	< 0.50		< 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	0.68	1.4		1.3
Sulphate (Acid Soluble)	Ü	2430	%	0.010	0.00		0.011	
Arsenic	Ū	2450		1.0	9.6	5.9		5.0
Cadmium	Ü	2450	mg/kg	0.10	< 0.10	< 0.10		< 0.10
Chromium	Ü	2450	mg/kg	1.0	19	13		12
Copper	U	2450	mg/kg	0.50	9.6	12		18
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10		< 0.10
Nickel	U	2450	mg/kg	0.50	13	20		23
Lead	Ü	2450	mg/kg	0.50	15	8.7		11
Selenium	U	2450	0 0	0.20	1.2	0.27		0.27
Zinc	U	2450	mg/kg	0.50	36	57		61
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50		< 0.50
Organic Matter	U	2625	%	0.40	1.4	0.41		1.0
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0
Aliphatic TPH >C10-C12	Ū	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0
Aliphatic TPH >C12-C16	Ū	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0
Aliphatic TPH >C16-C21	Ū	2680		1.0	< 1.0	< 1.0		< 1.0
Aliphatic TPH >C21-C35	Ū	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0		< 5.0
Aromatic TPH >C5-C7	N		mg/kg	1.0	< 1.0	< 1.0		< 1.0
Aromatic TPH >C7-C8	N		mg/kg	1.0	< 1.0	< 1.0		< 1.0

Client: HSP Consulting Engineers Limited		Che	mtest Jo	ob No.:	21-13333	21-13333	21-13333	21-13333
Quotation No.:		Chemte	st Sam	ole ID.:	1186050	1186051	1186053	1186056
Order No.: SC13672		Clie	nt Samp	le Ref.:	WS06	WS06	WS06	WS07
		Sa	ample Lo	cation:	WS06	WS06	WS06	WS07
			Sample	е Туре:	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.5	0.95	2	0.6
		Bot	tom Dep	oth (m):			2.45	
			Date Sa	mpled:	21-Apr-2021	21-Apr-2021	21-Apr-2021	21-Apr-2021
			Asbest	os Lab:	COVENTRY			
Determinand	Accred.	SOP	Units	LOD				
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0		< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10		< 10
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10		< 0.10
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10		< 0.10
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10		< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10		< 0.10
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	< 0.10		< 0.10
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10		< 0.10
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10		< 0.10
Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10		< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10		< 0.10
Chrysene	U	2700	mg/kg	0.10	< 0.10	< 0.10		< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10		< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10		< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10		< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10		< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10		< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10		< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	< 2.0		< 2.0
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0
Total Phenols	U	2920	mg/kg	0.10	< 0.10	< 0.10		< 0.10

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	pH	pH Meter
	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Appendix V

Determination Of Water Content

ISO 17892-1: 2014

Project No: D21240

Project Name: C3103 - Llanilltud Faerdref

Client: HSP Consulting

Address: Lawrence House,

Meadowbank Way,

Nottingham, NG16 3SB

ATS Sample No: 24316

Site Ref / Hole ID: WS01

Sampling Certificate

Received:

Sample No:

N/A No Depth (m):

Material Description:

1.50

Sample Type: Bulk

Grey slightly gravelly

CLAY

Location in Works:

Unknown

Material Source:

N/A

Date Sampled:

Unknown

Material Supplier:

N/A

Sampled By:

Client

Specification:

BS 1377

Date Received:

06 May 2021

Date Tested:

10 May 2021

Test Results

Moisture Content (%)

11.9

Remarks:

QA Ref.

BS1377-2 Rev. 2.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

A Grogan

Date

Fig

12/05/2021

MC

A Grogan, Laboratory Manager

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990: Clause 4.3/5.3/5.4

Address:

Project No: D21240

Project Name: C3103 - Llanilltud Faerdref

Client: HSP Consulting

Lawrence House, Meadowbank Way,

Nottingham,

ATS Sample No: 24316

NG16 3SB

Site Ref / Hole ID: WS01

Sample No: N/A

Sampling Certificate

Received:

Depth (m): 1.50

Sample Type: Bulk

Material Description: Grey slightly gravelly CLAY

Location in Works: Unknown

Unknown

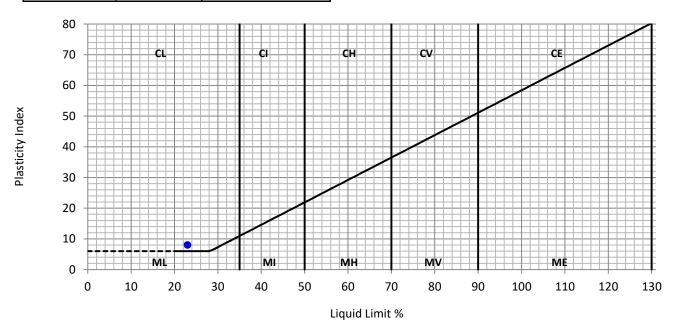
Sampled By: Client

Date Received: 06 May 2021

Material Source: N/A

Material Supplier: N/A

Specification: BS 1377


Date Tested: 11 May 2021

Test Results

Date Sampled:

Liquid Limit	23	%
Plastic Limit	15	%
Plasticity Index	8	%

Preparation:	4.2.4 Sieved Sp	ecimen	
Proportion retained	on 425µm sieve	: 27	%

Remarks:

QA Ref.BS1377-2

Rev 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ
Tel: 01656 746762 Fax: 01656 749096

Approver

A. Grogan

Date

Fig.

12/05/2021

ATT

L Davis, Quality Manager

Determination Of Water Content

ISO 17892-1: 2014

Project No: D21240

ATS Sample No: 24318

Project Name: C3103 - Llanilltud Faerdref

Client: HSP Consulting

Address: Lawrence House, Meadowbank Way,

Nottingham,

NG16 3SB

Site Ref / Hole ID:

WS02

Depth (m):

2.20

Sample No:

N/A

Sample Type:

Bulk

Sampling Certificate

Received:

No

Material Description:

Grey slightly gravelly

CLAY

Location in Works:

Unknown

Material Source:

N/A N/A

Date Sampled:

Unknown

Material Supplier:

BS 1377

Sampled By:

Client

Specification:

Date Tested:

12 May 2021

Date Received:

06 May 2021

Test Results

Moisture Content (%) 16.0

Remarks:

QA Ref.

BS1377-2 Rev. 2.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

A Grogan

Date

Fig

13/05/2021

MC

A Grogan, Laboratory Manager

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990: Clause 4.3/5.3/5.4

Address:

Project No:

D21240

Client: **HSP Consulting**

Project Name:

C3103 - Llanilltud Faerdref

Lawrence House,

Meadowbank Way, Nottingham,

ATS Sample No: 24318

NG16 3SB

Site Ref / Hole ID:

WS02

2.20 Depth (m):

Sample No:

N/A

Sample Type: Bulk

Sampling Certificate Received:

Material Description:

Grey slightly gravelly CLAY

Unknown

Material Source:

N/A

Date Sampled:

Location in Works:

Unknown

Material Supplier:

N/A

Sampled By:

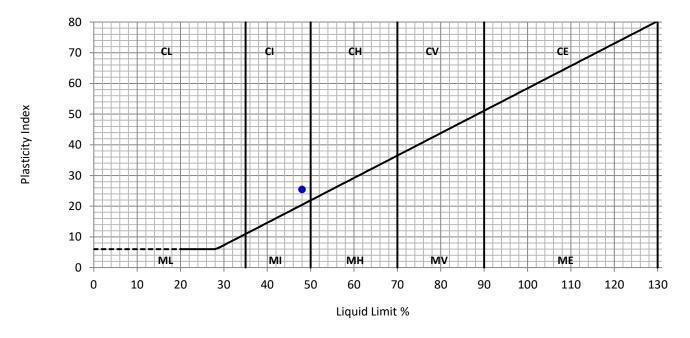
Client

Specification:

BS 1377

Date Received:

06 May 2021


Date Tested:

12 May 2021

Test Results

Liquid Limit	48	%
Plastic Limit	23	%
Plasticity Index	25	%

Preparation:	4.2.4 Sieved Sp	ecimen	
Proportion retained	on 425µm sieve	28	%

Remarks:

QA Ref.

BS1377-2 Rev 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

A. Grogan

Date

Fig.

13/05/2021

ATT

L Davis, Quality Manager

Determination Of Water Content

ISO 17892-1: 2014

Project No: D21240

ATS Sample No: 24320

Project Name: C3103 - Llanilltud Faerdref

HSP Consulting Address:

Lawrence House, Meadowbank Way,

Nottingham,

NG16 3SB

Site Ref / Hole ID:

WS04

Depth (m):

Client:

1.90

Sample No:

N/A

Sample Type:

Bulk

Sampling Certificate

Received:

No

Material Description:

Grey / brown slightly

gravelly CLAY

Location in Works:

Unknown

Material Source:

N/A

Date Sampled:

Unknown

Material Supplier:

N/A

Sampled By:

Client

Specification:

BS 1377

Date Received:

06 May 2021

Date Tested:

10 May 2021

Test Results

Moisture Content (%)

16.4

Remarks:

QA Ref.

BS1377-2 Rev. 2.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

A Grogan

Date

Fig

12/05/2021

MC

A Grogan, Laboratory Manager

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990: Clause 4.3/5.3/5.4

Address:

Project No: D21240

Client: **HSP Consulting**

C3103 - Llanilltud Faerdref

Lawrence House, Meadowbank Way,

Nottingham,

ATS Sample No: 24320

NG16 3SB

Site Ref / Hole ID: WS04

No

Sample No: N/A

Sampling Certificate

Received:

Project Name:

Depth (m):

Sample Type: Bulk

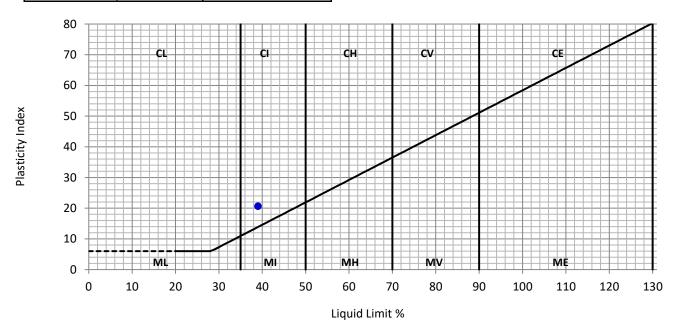
Material Description: Grey / brown slightly gravelly

CLAY

1.90

Location in Works: Unknown **Material Source:** N/A

Unknown N/A **Date Sampled: Material Supplier:**


Client BS 1377 Sampled By: Specification:

Date Received: 06 May 2021 **Date Tested:** 11 May 2021

Test Results

Liquid Limit	39	%
Plastic Limit	18	%
Plasticity Index	21	%

Preparation:	4.2.4 Sieved Sp		
Proportion retained	on 425µm sieve:	18	%

Remarks:

QA Ref. BS1377-2

Rev 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

A. Grogan

Date

Fig.

12/05/2021

ATT

L Davis, Quality Manager

Determination Of Water Content

ISO 17892-1: 2014

Project No: D21240

Project Name: C3103 - Llanilltud Faerdref

Client: HSP Consulting

Address: Lawrence House,

Meadowbank Way,

Nottingham, NG16 3SB

ATS Sample No: 24321

Site Ref / Hole ID: WS05

Sampling Certificate

Received:

Sample No:

N/A No Commis T

Depth (m): 0.90

Sample Type: Bulk

Material Description: Light brown / grey slightly

gravelly CLAY

Location in Works: Unknown

Date Sampled: Unknown

Sampled By: Client

Date Received: 06 May 2021

Material Source: N/A

Material Supplier: N/A

Specification: BS 1377

Date Tested: 12 May 2021

Test Results

Moisture Content (%)	18.7
----------------------	------

Remarks:

QA Ref.

BS1377-2 Rev. 2.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

A Grogan

Date

Fig

13/05/2021

MC

A Grogan, Laboratory Manager

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990: Clause 4.3/5.3/5.4

Address:

Project No: D21240

Project Name: C3103 - Llanilltud Faerdref Client: **HSP Consulting**

> Lawrence House, Meadowbank Way,

Nottingham, NG16 3SB

ATS Sample No: 24321

Site Ref / Hole ID: WS05

Sample No: N/A

Sampling Certificate

Received:

0.90 Depth (m):

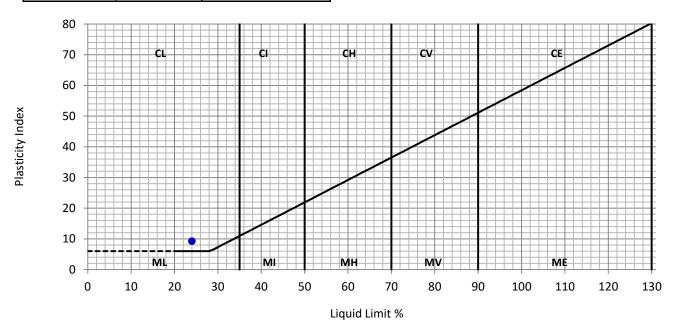
Sample Type: Bulk

Material Description: Light brown / grey slightly

gravelly CLAY

Location in Works: Unknown **Material Source:** N/A

Unknown N/A **Date Sampled: Material Supplier:**

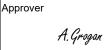

Client BS 1377 Sampled By: Specification:

Date Received: 06 May 2021 **Date Tested:** 12 May 2021

Test Results

Liquid Limit	24	%
Plastic Limit	15	%
Plasticity Index	9	%

Preparation:	4.2.4 Sieved Sp	ecimen	
Proportion retained	on 425µm sieve	: 8	%



Remarks:

QA Ref. BS1377-2 Rev 3.0

13/05/2021

Date

L Davis, Quality Manager

Fig.

ATT

Determination Of Water Content

ISO 17892-1: 2014

Project No: D21240

Project Name: C3103 - Llanilltud Faerdref

HSP Consulting Address: Lawrence House,

Meadowbank Way,

Nottingham, **NG16 3SB**

ATS Sample No: 24322

Site Ref / Hole ID: WS06

N/A Sample No:

Sampling Certificate

Received:

No

Depth (m):

Client:

1.10

Sample Type:

Material Description:

Brown slightly gravelly

CLAY

Bulk

Location in Works:

Unknown

Material Source:

Material Supplier:

N/A

N/A

Date Sampled:

Unknown

06 May 2021

BS 1377

Sampled By: **Date Received:** Client

Specification: **Date Tested:**

10 May 2021

Test Results

Moisture Content (%)

11.6

Remarks:

QA Ref.

BS1377-2 Rev. 2.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

A Grogan

Date

Fig

12/05/2021

MC

A Grogan, Laboratory Manager

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990: Clause 4.3/5.3/5.4

Project No: D21240

C3103 - Llanilltud Faerdref

Client: HSP Consulting

Address: Lawrence House, Meadowbank Way,

Nottingham,

ATS Sample No: 24322

NG16 3SB

Site Ref / Hole ID: WS06

N/A

No

Sample Type: Bulk

Sampling Certificate

Received:

Material Description:

Brown slightly gravelly CLAY

Location in Works:

Unknown

Material Source: N/A

Date Sampled:

Project Name:

Sample No:

Unknown

Client

Material Supplier: N/A

Sampled By:

Specification:

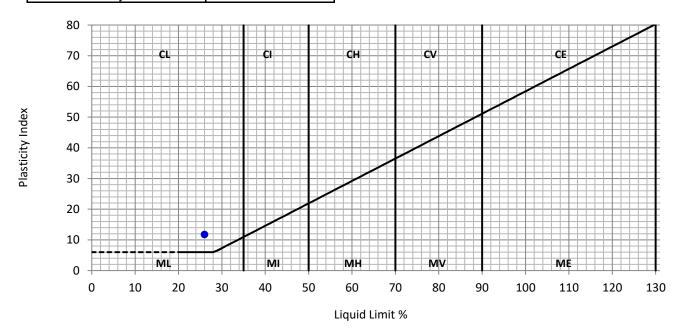
Depth (m):

BS 1377

1.10

Date Received:

06 May 2021


Date Tested:

11 May 2021

Test Results

Liquid Limit	26	%
Plastic Limit	14	%
Plasticity Index	12	%

Preparation:	4.2.4 Sieved Sp		
Proportion retained	on 425µm sieve:	19	%

Remarks:

QA Ref.

BS1377-2 Rev 3.0

Apex Testing Solutions
Sturmi Way, Village Farm Industrial Est, Pyle,

Tel: 01656 746762 Fax: 01656 749096

Bridgend, CF33 6BZ

Approver

A. Grogan

Date

Fig.

12/05/2021

ATT

L Davis, Quality Manager

Determination Of Water Content

ISO 17892-1: 2014

Project No: D21240

Project Name: C3103 - Llanilltud Faerdref

Client: HSP Consulting

Address: Lawrence House, Meadowbank Way,

Nottingham,

ATS Sample No: 24323

NG16 3SB

Site Ref / Hole ID: WS07

Sample No: N/A

Sampling Certificate

Received:

No

Depth (m):

Sample Type: Bulk

Material Description: Light

Light brown / grey slightly

gravelly CLAY

Location in Works:

Unknown

Material Source:

N/A N/A

2.20

Date Sampled:

Unknown

Material Supplier:

BS 1377

Sampled By:

Client

Specification:

Date Tested:

10 May 2021

Date Received:

06 May 2021

Test Results

Moisture Content (%) 14.5

Remarks:

QA Ref.

BS1377-2 Rev. 2.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

A Grogan

Date

Fig

12/05/2021

MC

A Grogan, Laboratory Manager

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

BS 1377:Part 2:1990: Clause 4.3/5.3/5.4

Address:

Project No: D21

D21240

Client: HSP Consulting

Project Name:

ATS Sample No:

C3103 - Llanilltud Faerdref

Lawrence House,

Meadowbank Way,

Nottingham,

NG16 3SB

Site Ref / Hole ID: WS07

24323

Depth (m): 2.20

Sample No: N/A

Sample Type: Bulk

Sampling Certificate Received:

- --

Light brown / grey slightly

Material Description: Lig

gravelly CLAY

gravelly CLA

Location in Works:

Unknown

06 May 2021

Material Source: N/A

Date Sampled:

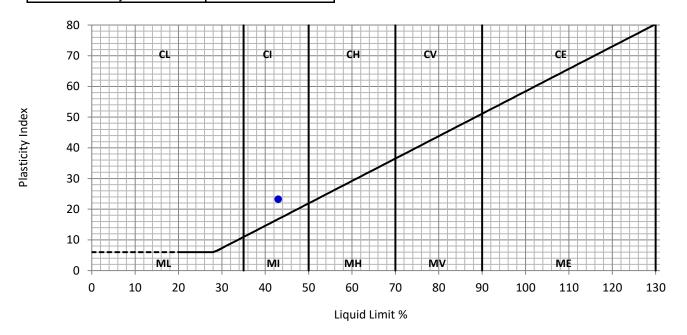
Unknown Material Supplier:

Sampled By: Client

Specification: BS 1377

Date Received:

Date Tested:


11 May 2021

N/A

Test Results

Liquid Limit	43	%
Plastic Limit	20	%
Plasticity Index	23	%

Preparation:	4.2.4 Sieved Sp		
Proportion retained	on 425µm sieve:	26	%

Remarks:

QA Ref.

BS1377-2 Rev 3.0

Apex Testing Solutions
Sturmi Way, Village Farm Industrial Est, Pyle,

Tel: 01656 746762 Fax: 01656 749096

Bridgend, CF33 6BZ

Approver

A. Grogan

Date

Fig.

12/05/2021

ATT

L Davis, Quality Manager

PARTICLE SIZE DISTRIBUTION ANALYSIS

BS 1377:Part 2:1990: Clause 9.2 / 9.4

Project No: D21240

Client:

HSP Consulting

Project Name:

ATS Sample No:

C3103 - Llanilltud Faerdref

Address: Lawrence House,

Meadowbank Way,

Nottingham,

NG16 3SB

Site Ref / Hole ID:

WS02

24317

Depth (m):

0.60

Bulk

Sample No:

N/A

Sample Type:

Mottled brown / orange / grey

Sampling Certificate

Received:

No

Material Description:

clayey very gravelly very silty

SAND

Location in Works:

Unknown

Material Source:

N/A

N/A

Date Sampled:

Unknown

Material Supplier:

BS 1377

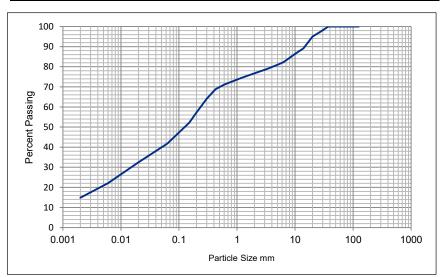
Sampled By:

Client

Specification: **Date Tested:**

17 May 2021

Date Received:


06 May 2021

Test Results

Sieving		
Particle Size	% Passing	
mm	% Passing	
125	100	
90	100	
75	100	
63	100	
50	100	
37.5	100	
28	98	
20	95	
14	89	
10	86	
6.3	82	
5.0	81	
3.35	79	
2.00	77	
1.18	74	
0.600	71	
0.425	69	
0.300	64	
0.212	58	
0.150	52	
0.063	42	

Sedimentation		
Particle Size	% Passing	
mm	% Passing	
0.0201	33	
0.0060	22	
0.0020	15	

Preparation / Pretro	eatment
Sieve:	Pre dried
Pipette:	as BS1377

Sample Portions		Particle Der	nsity Mg/m3	Uniformity Coefficient		
Cobbles / Boulders	0	2.65 assumed		Officient Coefficient		
Gravel	23	2.00	assumed	D ₆₀ / D ₁₀		
Sand	35	Dry mass of sample, kg		D ₆₀ / D ₁₀		
Silt	27	2	1			
Clav	15]	. 1			

Remarks:

QA Ref.

BS1377 - 2 Rev 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

A Grogan

Date

A Grogan, Laboratory Manager

Fig

17/05/2021

PSD

PARTICLE SIZE DISTRIBUTION ANALYSIS

BS 1377:Part 2:1990: Clause 9.2 / 9.4

Project No: D21240 Client:

HSP Consulting

Project Name:

ATS Sample No:

C3103 - Llanilltud Faerdref

Address: Lawrence House,

Meadowbank Way,

Nottingham,

NG16 3SB

WS04

24319

Depth (m):

0.60

Bulk

Sample No:

N/A

Sample Type:

Brown clayey gravelly very silty

SAND

Sampling Certificate Received:

Site Ref / Hole ID:

No

Material Description:

Location in Works:

Unknown

Material Source:

N/A

N/A

Date Sampled:

Unknown

Material Supplier:

BS 1377

Sampled By:

Client

Specification: **Date Tested:**

17 May 2021


Date Received: 06 May 2021

Test Results

Sieving					
Particle Size	% Passing				
mm	70 T G551119				
125	100				
90	100				
75	100				
63	100				
50	100				
37.5	100				
28	100				
20	96				
14	92				
10	89				
6.3	86				
5.0	85				
3.35	84				
2.00	82				
1.18	80				
0.600	76				
0.425	73				
0.300	68				
0.212	61				
0.150	53				
0.063	40				

Sedimentation				
Particle Size	0/ Dessing			
mm	% Passing			
0.0201	32			
0.0060	22			
0.0020	15			

Preparation / Pretreatment			
Sieve:	Pre dried		
Pipette:	as BS1377		

Sample Portions		Particle Der	nsity Mg/m3	Uniformity Coefficient		
Cobbles / Boulders	0	2.65 assumed		Officiality Coefficient		
Gravel	18	2.00	assumed	D ₆₀ / D ₁₀		
Sand	42	Dry mass of sample, kg		D ₆₀ / D ₁₀		
Silt	25	2	0			
Clay	15	2.0				

Remarks:

QA Ref.

BS1377 - 2 Rev 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

င်္ကာ	
(⊁∢)	
UKAS	
7771	

	_	Α
ı	-	
ì		
4	E	

Approver A Grogan Date

A Grogan, Laboratory Manager

Fig

17/05/2021

PSD

Appendix VI

Gas Testing Summary

Project Number	C3103
Project Name	Llanilltud Faerdref Primary School
Client	Fulcrum Infrastructure Management

Methane. (%LEL)						
WS01	F	<0.1	<0.1	<0.1		
WS03	<0.1	<0.1	<0.1	<0.1		
WS06	F	<0.1	<0.1	<0.1		

F = Flooded

Methane. (%vol)						
WS01	F	<0.1	<0.1	<0.1		
WS03	<0.1	<0.1	<0.1	<0.1		
WS06	F	<0.1	<0.1	<0.1		

0:	Oxygen. (%vol)								
WS01	F	19.5	19.8	20					
WS03	18.8	16.3	16.3	15					
WS06	F	19.2	19.4	19.3					

Gas Testing Summary

Project Number	C3103
Project Name	Llanilltud Faerdref Primary School
Client	Fulcrum Infrastructure Management

Carbo	Carbon Dioxide. (%vol)								
WS01	F	0.8	0.5	0.7					
WS03	0.9	1.1	5.1	5.3					
WS06	F	3.1	2.6	2.9					

Hydrog	Hydrogen Sulphide. (ppm)								
WS01	F	<1	<1	<1					
WS03	0	<1	<1	<1					
WS06	F	1	<1	<1					

Carbon	Carbon Monoxide. (ppm)								
WS01	F	1	2	4					
WS03	0	<1	<1	<1					
WS06	F	<1	1	<1					

Gas Testing Summary

Project Number	C3103
Project Name	Llanilltud Faerdref Primary School
Client	Fulcrum Infrastructure Management

Gas	Gas Flow Rate (I/hr)							
WS01	F	0.1	0.1	0.1				
WS03	0.1	0.1	0.1	0.1				
WS06	F	0.1	0.1	0.1				

Atmospheric Pressure Range							
	996	996	1015	1003			

Max Methane Concentration (%vol) 0
Max Carbon Dioxide Concentration (%vol) 5.3
Max Carbon Monoxide Concentration (ppm) 1
Max Hydrogen Sulphide Concentration (ppm) 4
Max Flow Rate (I/hr) 0.1
Max Volatile Organic Carbon Concentration (ppm) 0

Methane Gas Screening Value 0
Carbon Dioxide Gas Screening Value 0.0053
Carbon Monoxide Gas Screening Value 0.001
Hydrogen Sulphide Gas Screening Value 0.004

Maximum Gas Screening Value 0.0053

Characteristic Situation 1 FAIL
Characteristic Situation 2 PASS
Characteristic Situation 3 PASS
Characteristic Situation 4 PASS
Characteristic Situation 5 PASS
Characteristic Situation 6 PASS

Hydrocarbon Vapour Barrier Required? NO

Project Number Project Name Client		Llanilltud Faerdref Primary School Fulcrum Infrastructure Management WS01									
		Detection Limit									
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1			
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppm)	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)	
00:00	F	F	F	F	F	F	F	F			
00:15											
00:30	Ш—										
00:45	-										
01:00	+-										
01:15	4										
01:30	\mathbf{H}		1		-	<u> </u>					
01:45 02:00	H										
02:00	\mathbf{H}										
02:30	\mathbf{H}										
02:45	\mathbf{H}										
03:00	H				 						
03:15	11										
03:30											
03:45	11 1					1					
04:00											
04:15											
04:30											
04:45											
05:00	Ш										
Steady	F	F	F	F	F	F	F	F	#####		
Peak	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	
Date 12.05.2021	Engine		tes: LAB		Baro			e, mbar		996	
	Equip :	nont.	CENAA	20			re Tren			eady	
	Equipn	ient	GFM43	5U		Alf 16	emp (°C)		L6	

Project Number C3103 WS03 **Project Name** Llanilltud Faerdref Primary School Client Fulcrum Infrastructure Management **Detection Limit** <0.1 <0.1 <0.1 <0.1 < 0.1 <1 <1 Volatile Organic Carbon (ppm Depth of Groundwater (mbgl Depth of Installation. (mbgl) Hydrogen Sulphide. (ppm) Carbon Monoxide. (ppm) Carbon Dioxide. (%vol) Gas Flow Rate. (I/hr) Methane. (%LEL) Methane. (%vol) Oxygen. (%vol) Time 00:00 0.1 < 0.1 < 0.1 16.8 2.0 0 0 3.00 1.30 00:15 0.1 < 0.1 < 0.1 16.8 2.0 0 0 00:30 0.1 < 0.1 < 0.1 17.6 1.5 0 0 00:45 0.1 < 0.1 < 0.1 18.2 1.1 0 0 01:00 < 0.1 < 0.1 18.2 1.1 0 0.1 0 01:15 < 0.1 < 0.1 18.2 1.1 0 0 0.1 01:30 < 0.1 < 0.1 18.8 0.9 0 0 0.1 01:45 0.1 < 0.1 < 0.1 18.8 0.9 0 0 02:00 0.1 < 0.1 < 0.1 18.8 0.9 0 0 02:15 0.1 < 0.1 < 0.1 18.8 0.9 0 0 02:30 <0.1 <0.1 0.9 0 0 0.1 18.8 < 0.1 0.9 0 0 02:45 0.1 < 0.1 18.8 < 0.1 03:00 < 0.1 18.8 0.9 0 0.1 0 03:15 0.1 <0.1 < 0.1 18.8 0.9 0 0 03:30 <0.1 < 0.1 18.8 0.9 0 0 0.1 03:45 < 0.1 < 0.1 18.8 0.9 0 0 0.1 04:00 <0.1 < 0.1 18.8 0.9 0 0 0.1 0 04:15 0.1 < 0.1 < 0.1 18.8 0.9 0 04:30 0.1 < 0.1 < 0.1 18.8 0.9 0 0 04:45 0.1 <0.1 < 0.1 18.8 0.9 0 05:00 Steady 0.1 <0.1 <0.1 18.8 0.9 0.0 0.0 ##### 3.00 1.30 **Peak** 0.1 0.0 0.0 18.8 2.0 0.0 0.0 0.0 3.00 1.30 Date Notes: 996 12.05.2021 Engineer LAB Barometric Pressure, mbar **Pressure Trend** Steady Equipment **GFM430** Air Temp (°C) 16

Project Number C3103 WS06 **Project Name** Llanilltud Faerdref Primary School Fulcrum Infrastructure Management Client **Detection Limit** <0.1 <0.1 <0.1 <1 <0.1 < 0.1 <1 Depth of Groundwater (mbgl Volatile Organic Carbon (ppr Depth of Installation. (mbgl) Hydrogen Sulphide. (ppm) Carbon Monoxide. (ppm) Carbon Dioxide. (%vol) Gas Flow Rate. (I/hr) Methane. (%LEL) Methane. (%vol) Oxygen. (%vol) -ime 00:00 F F F F F F F 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00 02:15 02:30 02:45 03:00 03:15 03:30 03:45 04:00 04:15 04:30 04:45 05:00 Steady ##### ##### F F F F F F F F **Peak** 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 Notes: Date 996 12.05.2021 LAB Engineer Barometric Pressure, mbar **Pressure Trend** Steady Air Temp (°C) GFM430 Equipment 16

Project Number C3103 WS01 Llanilltud Faerdref Primary School **Project Name** Fulcrum Infrastructure Management Client **Detection Limit** <0.1 <0.1 <0.1 <0.1 <1 <0.1 <1 Volatile Organic Carbon (ppm Depth of Groundwater (mbgl Depth of Installation. (mbgl Hydrogen Sulphide. (ppm) Carbon Monoxide. (ppm) Carbon Dioxide. (%vol) Gas Flow Rate. (I/hr) Methane. (%LEL) Methane. (%vol) Oxygen. (%vol) 21.0 0.1 <1 <1 2.00 00:00 0.1 < 0.1 < 0.1 0.60 00:15 0.1 <0.1 < 0.1 20.5 0.1 <1 <1 00:30 0.1 < 0.1 < 0.1 20.5 0.3 <1 1 1 00:45 0.1 < 0.1 < 0.1 20.3 0.3 <1 2 < 0.1 < 0.1 20.3 0.3 1 01:00 0.1 01:15 0.1 < 0.1 < 0.1 20.1 8.0 1 5 01:30 0.1 < 0.1 < 0.1 20.1 0.8 <1 1 01:45 0.1 < 0.1 < 0.1 20.1 0.5 <1 1 02:00 0.1 < 0.1 < 0.1 20.1 0.5 <1 10 02:15 0.1 < 0.1 < 0.1 19.8 0.5 <1 8 02:30 <0.1 4 0.1 < 0.1 19.8 0.9 <1 02:45 0.1 < 0.1 < 0.1 20.1 0.9 1 <1 03:00 0.1 < 0.1 < 0.1 19.8 0.9 1 1 03:15 <0.1 < 0.1 19.8 0.9 <1 1 0.1 03:30 0.1 < 0.1 < 0.1 19.8 0.8 <1 1 03:45 < 0.1 0.1 < 0.1 19.8 0.8 <1 1 04:00 < 0.1 < 0.1 19.5 8.0 <1 1 0.1 04:15 04:30 04:45 05:00 Steady 0.1 <0.1 <0.1 19.5 0.8 1.0 ##### 2.00 0.60 <1 **Peak** 0.0 21.0 1.0 10.0 0.1 0.0 0.9 0.0 2.00 0.60 Notes: Date 996 24.05.2021 Engineer LAB Barometric Pressure, mbar **Pressure Trend** rising Equipment GFM430 Air Temp (°C) 19

Project Number C3103 **WS03 Project Name** Llanilltud Faerdref Primary School Client Fulcrum Infrastructure Management **Detection Limit** <0.1 <0.1 <0.1 <0.1 <1 <1 <0.1 Volatile Organic Carbon (ppr Depth of Groundwater (mbgl Depth of Installation. (mbgl) Hydrogen Sulphide. (ppm) Carbon Monoxide. (ppm) Carbon Dioxide. (%vol) Gas Flow Rate. (I/hr) Methane. (%LEL) Methane. (%vol) Oxygen. (%vol) ime <1 3.00 00:00 0.1 < 0.1 < 0.1 19.8 0.1 <1 1.10 00:15 0.1 < 0.1 < 0.1 17.2 1.1 <1 <1 00:30 17.2 0.1 < 0.1 < 0.1 1.5 <1 <1 00:45 0.1 < 0.1 < 0.1 17.0 2.3 <1 <1 01:00 0.1 <0.1 <0.1 15.8 2.3 <1 <1 01:15 0.1 < 0.1 < 0.1 15.8 2.3 <1 <1 01:30 < 0.1 < 0.1 15.2 1.7 <1 <1 0.1 < 0.1 01:45 0.1 < 0.1 14.1 1.7 <1 <1 02:00 <0.1 <0.1 14.1 1.1 0.1 <1 <1 <0.1 02:15 0.1 <0.1 14.1 1.1 <1 <1 02:30 0.1 < 0.1 < 0.1 15.2 1.1 <1 <1 02:45 0.1 < 0.1 < 0.1 15.2 1.1 <1 <1 03:00 < 0.1 15.3 <1 0.1 < 0.1 1.1 <1 03:15 0.1 < 0.1 < 0.1 15.8 1.1 <1 <1 03:30 < 0.1 < 0.1 15.8 1.1 <1 <1 0.1 03:45 0.1 < 0.1 < 0.1 15.9 1.1 <1 <1 04:00 0.1 < 0.1 < 0.1 16.3 1.1 <1 <1 04:15 0.1 < 0.1 < 0.1 16.3 1.1 <1 <1 04:30 0.1 <0.1 < 0.1 16.3 1.1 <1 <1 04:45 < 0.1 0.1 < 0.1 16.3 1.1 <1 <1 05:00 0.1 < 0.1 < 0.1 16.3 1.1 <1 <1 Steady ##### 3.00 0.1 <0.1 < 0.1 16.3 1.1 <1 <1 1.10 **Peak** 0.1 0.0 0.0 19.8 2.3 0.0 0.0 0.0 3.00 1.10 Date Notes: 996 24.05.2021 Engineer LAB Barometric Pressure, mbar **Pressure Trend** rising Equipment GFM430 Air Temp (°C) 19

Project Number C3103 **WS06** Llanilltud Faerdref Primary School **Project Name** Fulcrum Infrastructure Management Client **Detection Limit** <0.1 <0.1 <0.1 <0.1 <1 <1 <0.1 Depth of Groundwater (mbg Volatile Organic Carbon (pp Depth of Installation. (mbgl) Hydrogen Sulphide. (ppm) Carbon Monoxide. (ppm) Carbon Dioxide. (%vol) Gas Flow Rate. (I/hr) Methane. (%LEL) Methane. (%vol) Oxygen. (%vol) ime < 0.1 17.1 0.1 2.50 00:00 0.1 < 0.1 <1 <1 0.70 00:15 0.1 < 0.1 < 0.1 18.3 0.1 <1 1 00:30 0.1 < 0.1 < 0.1 18.8 0.9 1 1 00:45 19.2 3 0.1 < 0.1 < 0.1 1.1 1 01:00 0.1 < 0.1 <0.1 19.2 1.3 1 4 01:15 <0.1 < 0.1 19.2 1.3 <1 1 0.1 01:30 0.1 < 0.1 < 0.1 19.2 2.5 <1 1 01:45 < 0.1 19.2 2.8 0.1 < 0.1 <1 <1 < 0.1 < 0.1 <1 <1 02:00 0.1 19.2 3.1 02:15 0.1 <0.1 <0.1 19.2 3.3 <1 1 02:30 < 0.1 < 0.1 19.2 3.3 2 0.1 1 02:45 < 0.1 19.2 4 0.1 < 0.1 3.1 1 03:00 0.1 < 0.1 < 0.1 19.2 3.1 <1 <1 03:15 0.1 < 0.1 < 0.1 19.2 3.1 <1 <1 <0.1 <0.1 3 03:30 0.1 19.2 3.1 <1 03:45 < 0.1 19.2 3 0.1 < 0.1 3.1 1 04:00 0.1 < 0.1 < 0.1 19.2 3.1 <1 04:15 04:30 04:45 05:00 Steady ##### 2.50 0.70 <0.1 <0.1 19.2 3.1 1.0 0.1 <1 Peak 0.1 0.0 0.0 19.2 3.3 1.0 4.0 0.0 2.50 0.70 Date Notes: 996 Barometric Pressure, mbar 24.05.2021 Engineer LAB

GFM430

Equipment

Pressure Trend

Air Temp (°C)

rising

19

Project Number Project Name Client		lanilltud Faerdref Primary School ulcrum Infrastructure Management							W	S01
					ection L			0.4		
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1	1	
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppm	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)
00:00	0.1	<0.1	<0.1	20.5	0.2	<1	2		1.95	0.84
00:15	0.1	<0.1	<0.1	20.5	0.2	<1	2			
00:30	0.1	<0.1	<0.1	20.3	0.2	<1	5			
00:45	0.1	<0.1	<0.1	20.3	0.2	<1	9			
01:00	0.1	<0.1	<0.1	20.3	0.2	<1	15			
01:15	0.1	<0.1	<0.1	20.1	0.2	<1	21			
01:30	0.1	<0.1	<0.1	20.1	0.3	<1	17			
01:45	0.1	<0.1	<0.1	20.0	0.3	<1	17			
02:00	0.1	<0.1	<0.1	20.1	0.5	<1	13			
02:15	0.1	<0.1	<0.1	20.0	0.5	<1	12			
02:30	0.1	<0.1	<0.1	20.0	0.5	<1	8			
02:45	0.1	<0.1	<0.1	20.0	0.5	<1	8			
03:00	0.1	<0.1	<0.1	19.8	0.5	<1	8			
03:15	0.1	<0.1	<0.1	19.8	0.5	<1	3			
03:30	0.1	<0.1	<0.1	19.8	0.5	<1	3			
03:45	0.1	<0.1	<0.1	19.8	0.5	<1	3			
04:00	0.1	<0.1	<0.1	19.8	0.5	<1	2		1	$\sqcup \sqcup$
04:15	0.1	<0.1	<0.1	19.8	0.5	<1	2			
04:30	0.1	<0.1	<0.1	19.8	0.5	<1	2			
04:45	0.1	<.1	<0.1	19.8	0.5	<1	2		_	\square
05:00	0.1	<0.1	<0.1	19.8	0.5	<1	2			
Steady	0.1	<0.1	<0.1	19.8	0.5	<1	2.0	#####	1.95	0.84
Peak	0.1	0.0	0.0	20.5	0.5	0.0	21.0	0.0	1.95	0.84
Date 08.06.2021	Engine	Not er	es: LAB		Baroı			e, mbar		015
	Em. ilm in	aant	CENAA	20			re Tren		_	eady
	Equipn	nent	GFM43	5U		AIT I	emp (°C)	4	21

Project Number C3103 **WS03** Llanilltud Faerdref Primary School **Project Name** Client Fulcrum Infrastructure Management **Detection Limit** <0.1 <0.1 <0.1 <0.1 <1 <1 <0.1 Volatile Organic Carbon (ppr Depth of Groundwater (mbgl Depth of Installation. (mbgl) Hydrogen Sulphide. (ppm) Carbon Monoxide. (ppm) Carbon Dioxide. (%vol) Gas Flow Rate. (I/hr) Methane. (%LEL) Methane. (%vol) Oxygen. (%vol) ime <1 2.90 00:00 0.1 < 0.1 < 0.1 20.1 0.5 <1 1.20 00:15 <1 0.1 < 0.1 < 0.1 20.1 0.5 <1 00:30 < 0.1 0.1 < 0.1 17.8 0.8 <1 <1 0.9 00:45 0.1 < 0.1 < 0.1 17.8 <1 <1 01:00 0.1 <0.1 <0.1 17.4 1.3 <1 <1 01:15 0.1 < 0.1 < 0.1 17.1 1.3 <1 <1 01:30 < 0.1 < 0.1 16.4 2.1 <1 <1 0.1 < 0.1 01:45 0.1 < 0.1 16.4 2.8 <1 <1 02:00 <0.1 <0.1 15.9 4.4 <1 0.1 <1 02:15 <0.1 <0.1 15.9 4.9 0.1 <1 <1 02:30 0.1 < 0.1 < 0.1 16.3 5.6 <1 <1 02:45 0.1 < 0.1 < 0.1 16.3 5.1 <1 <1 03:00 < 0.1 16.3 <1 0.1 < 0.1 5.1 <1 <0.1 03:15 0.1 < 0.1 16.3 5.1 <1 <1 03:30 < 0.1 < 0.1 16.3 5.1 <1 <1 0.1 03:45 < 0.1 0.1 < 0.1 16.3 5.1 <1 <1 04:00 0.1 <0.1 < 0.1 16.3 5.1 <1 <1 04:15 04:30 04:45 05:00 Steady <0.1 ##### 2.90 1.20 0.1 < 0.1 16.3 5.1 <1 <1 0.0 **Peak** 0.1 0.0 0.0 20.1 5.6 0.0 0.0 2.90 1.20 Date Notes: 1015 08.06.2021 Engineer LAB Barometric Pressure, mbar **Pressure Trend** Steady Equipment GFM430 Air Temp (°C) 21

Project Number C3103 **WS06** Llanilltud Faerdref Primary School **Project Name** Client Fulcrum Infrastructure Management **Detection Limit** <0.1 <0.1 <0.1 <0.1 <1 <1 <0.1 Depth of Groundwater (mbg Volatile Organic Carbon (pp Depth of Installation. (mbgl) Hydrogen Sulphide. (ppm) Carbon Monoxide. (ppm) Carbon Dioxide. (%vol) Gas Flow Rate. (I/hr) Methane. (%LEL) Methane. (%vol) Oxygen. (%vol) ime < 0.1 20.7 0.5 2.50 00:00 0.1 < 0.1 <1 <1 1.26 00:15 0.1 < 0.1 < 0.1 20.5 0.5 <1 <1 00:30 < 0.1 < 0.1 20.5 0.7 <1 1 0.1 00:45 0.1 < 0.1 < 0.1 20.5 0.7 <1 1 01:00 0.1 < 0.1 <0.1 19.9 0.7 <1 1 <0.1 < 0.1 19.9 1.1 <1 1 01:15 0.1 01:30 0.1 < 0.1 < 0.1 19.9 1.1 <1 3 01:45 < 0.1 1.8 2 0.1 < 0.1 19.4 <1 < 0.1 < 0.1 19.4 2 02:00 0.1 1.8 <1 02:15 0.1 <0.1 <0.1 19.4 1.8 <1 2 02:30 <0.1 < 0.1 19.4 3.5 <1 1 0.1 02:45 < 0.1 19.4 3.5 <1 2 0.1 < 0.1 03:00 0.1 < 0.1 < 0.1 19.4 2.6 <1 2 2 03:15 0.1 < 0.1 < 0.1 19.4 2.6 <1 <0.1 <0.1 19.4 2.6 1 03:30 0.1 <1 03:45 < 0.1 < 0.1 19.4 2.6 1 0.1 <1 04:00 0.1 < 0.1 < 0.1 19.4 2.6 <1 1 04:15 <0.1 0.1 <0.1 19.4 2.6 <1 1 04:30 04:45 05:00 Steady <0.1 ##### 2.50 1.26 0.1 <0.1 19.4 2.6 <1 1.0 Peak 0.1 0.0 0.0 20.7 3.5 0.0 3.0 0.0 2.50 1.26 Date Notes: 1015 Barometric Pressure, mbar 08.06.2021 Engineer LAB **Pressure Trend** Steady GFM430 Air Temp (°C) 21 Equipment

Project Number Project Name Client		3103 lanilltud Faerdref Primary School ulcrum Infrastructure Management							W:	501
				Det	ection l	₋imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppm)	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)
00:00	0.1	<0.1	<0.1	20.3	0.2	<1	<1		1.86	0.92
00:15	0.1	<0.1	<0.1	20.2	0.6	<1	<1			
00:30	0.1	<0.1	<0.1	20.1	0.6	<1	8			
00:45	0.1	<0.1	<0.1	20.0	0.6	<1	6			
01:00	0.1	<0.1	<0.1	20.0	0.6	<1	63			
01:15	0.1	<0.1	<0.1	20.0	0.6	<1	29			
01:30	0.1	<0.1	<0.1	20.0	0.6	<1	21			
01:45	0.1	<0.1	<0.1	20.0	0.6	<1	9			
02:00	0.1	<0.1	<0.1	20.0	0.6	<1	8			
02:15	0.1	<0.1	<0.1	20.0	0.7	<1	4			
02:30	0.1	<0.1	<0.1	20.0	0.7	<1	3			
02:45	0.1	<0.1	<0.1	20.0	0.7	<1	4			
03:00	0.1	<0.1	<0.1	20.0	0.7	1	4			
03:15	0.1	<0.1	<0.1	20.0	0.7	<1	8			
03:30	0.1	<0.1	<0.1	20.0	0.7	<1	4			
03:45										
04:00										
04:15	44									
04:30										
04:45	#	_							ļ	
05:00	#									
Steady	0.1	<0.1	<0.1	20.0	0.7	<1	4.0	#####	1.86	0.92
Peak	0.1	0.0	0.0	20.3	0.7	1.0	63.0	0.0	1.86	0.92
Date 04.08.2021	Engine	Not er	es: DRS		Barometric Pressure, mbar				003	
	Earthe -	aont	CENAA	20			re Trer		+	eady
	Equipn	ient	GFM43	υ		AIT IE	mp (°C)	4	21

Project Number C3103 **WS03 Project Name** Llanilltud Faerdref Primary School Client Fulcrum Infrastructure Management **Detection Limit** <0.1 <0.1 <0.1 <0.1 <1 <1 <0.1 Volatile Organic Carbon (ppr Depth of Groundwater (mbgl Depth of Installation. (mbgl) Hydrogen Sulphide. (ppm) Carbon Monoxide. (ppm) Carbon Dioxide. (%vol) Gas Flow Rate. (I/hr) Methane. (%LEL) Methane. (%vol) Oxygen. (%vol) ime <1 2.75 00:00 0.1 < 0.1 < 0.1 20.3 < 0.1 <1 1.47 00:15 0.1 < 0.1 < 0.1 15.7 4.7 <1 <1 00:30 < 0.1 0.1 < 0.1 14.5 5.5 <1 <1 00:45 0.1 < 0.1 < 0.1 13.8 6.1 <1 <1 01:00 0.1 <0.1 <0.1 13.1 6.5 <1 <1 01:15 0.1 < 0.1 < 0.1 12.7 6.6 <1 <1 01:30 < 0.1 < 0.1 12.4 6.7 <1 <1 0.1 < 0.1 01:45 0.1 < 0.1 12.3 6.8 <1 <1 <0.1 <0.1 12.2 6.9 02:00 0.1 <1 <1 <0.1 12.2 6.9 02:15 0.1 <0.1 <1 <1 02:30 0.1 < 0.1 < 0.1 12.2 6.9 <1 <1 02:45 0.1 < 0.1 < 0.1 12.2 6.9 <1 <1 < 0.1 12.7 <1 03:00 0.1 < 0.1 6.8 <1 03:15 0.1 < 0.1 < 0.1 13.2 6.5 <1 <1 03:30 < 0.1 < 0.1 13.6 <1 <1 0.1 6.1 03:45 0.1 < 0.1 < 0.1 13.9 6.0 <1 <1 04:00 0.1 < 0.1 < 0.1 14.2 5.6 <1 <1 04:15 0.1 < 0.1 < 0.1 14.5 5.6 <1 <1 04:30 0.1 <0.1 < 0.1 14.7 5.5 <1 <1 04:45 < 0.1 14.9 5.4 0.1 < 0.1 <1 <1 05:00 0.1 < 0.1 < 0.1 15.0 5.3 <1 <1 Steady ##### 2.75 0.1 <0.1 < 0.1 15.0 5.3 <1 <1 1.47 **Peak** 0.1 0.0 0.0 20.3 6.9 0.0 0.0 0.0 2.75 1.47 Date Notes: 1003 04.08.2021 Engineer DRS Barometric Pressure, mbar **Pressure Trend** Steady Equipment GFM430 Air Temp (°C) 21

Project Number C3103 **WS06** Llanilltud Faerdref Primary School **Project Name** Fulcrum Infrastructure Management Client **Detection Limit** <0.1 <0.1 <0.1 <0.1 <1 <1 <0.1 Depth of Groundwater (mbg Volatile Organic Carbon (pp Depth of Installation. (mbgl) Hydrogen Sulphide. (ppm) Carbon Monoxide. (ppm) Carbon Dioxide. (%vol) Gas Flow Rate. (I/hr) Methane. (%LEL) Methane. (%vol) Oxygen. (%vol) ime < 0.1 20.5 0.1 00:00 0.1 < 0.1 <1 <1 2.41 1.70 00:15 0.1 < 0.1 < 0.1 19.6 2.7 <1 6 00:30 0.1 < 0.1 < 0.1 19.4 2.8 <1 4 00:45 < 0.1 19.3 0.1 < 0.1 2.8 <1 1 01:00 0.1 < 0.1 <0.1 19.3 2.9 1 3 01:15 <0.1 < 0.1 19.3 2.9 <1 1 0.1 01:30 0.1 < 0.1 < 0.1 19.3 2.9 <1 3 01:45 < 0.1 19.3 2.9 3 0.1 < 0.1 <1 < 0.1 < 0.1 19.3 2.9 3 02:00 0.1 <1 02:15 0.1 <0.1 <0.1 19.3 2.9 <1 4 02:30 <0.1 < 0.1 19.3 2.9 1 0.1 <1 02:45 < 0.1 < 0.1 19.3 2.9 <1 3 0.1 03:00 0.1 < 0.1 < 0.1 19.3 2.9 <1 <1 03:15 03:30 03:45 04:00 04:15 04:30 04:45 05:00 Steady ##### 1.70 0.1 <0.1 <0.1 19.3 2.9 2.41 <1 <1 Peak 0.1 0.0 0.0 20.5 2.9 1.0 6.0 0.0 2.41 1.70 Date Notes: 1003 Barometric Pressure, mbar 04.08.2021 Engineer DRS **Pressure Trend** Steady GFM430 Air Temp (°C) 21 Equipment

Appendix VII

Waste Classification Report

Job name

C3103 - Llanilltud Faerdref Primary School

Description/Comments

Chemical analysis for HHRA - Chemtest data: 21-13333-1

Project

C3103 - LLanilltud Faerdref Primary School

Site

Llanilltud Faerdref Primary School

Related Documents

# Name	Description
1 HWOL_21-13333-20210504 125324.hwol	.hwol file used to create the Job

Waste Stream Template

Example waste stream template for contaminated soils

Classified by

Name: Company:

Laura Jones Date:

HSP Consulting Engineers Limited

25 May 2021 13:16 GMT Telephone:

HazWasteOnline™ Training Record:

Date Hazardous Waste Classification 11 Feb 2020 Advanced Hazardous Waste Classification 12 Feb 2020

Report

Created by: Laura Jones

Created date: 25 May 2021 13:16 GMT

Job summary

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	WS01-WS01-21/04/2021-0.3	0.3	Non Hazardous		3
2	WS02-WS02-21/04/2021-0.95	0.95	Non Hazardous		6
3	WS03-WS03-21/04/2021-0.2	0.2	Non Hazardous		9
4	WS04-WS04-21/04/2021-0.55	0.55	Non Hazardous		12
5	WS05-WS05-21/04/2021-0.3	0.3	Non Hazardous		15
6	WS06-WS06-21/04/2021-0.5	0.5	Non Hazardous		18
7	WS06-WS06-21/04/2021-0.95	0.95	Non Hazardous		21
8	WS07-WS07-21/04/2021-0.6	0.6	Non Hazardous		24

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	27
Appendix B: Rationale for selection of metal species	28

Appendices	Page
Appendix C: Version	29

Page 2 of 29 XWETX-76GQU-K7ZHJ www.hazwasteonline.com

Classification of sample: WS01-WS01-21/04/2021-0.3

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Moisture content:

10%

Sample Name: LoW Code: WS01-WS01-21/04/2021-0.3 Chapter: Sample Depth: Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)17 05 04 (Soil and stones other than those mentioned in 17 05

17 05 04 (Soil and stones other than those mentioned in 17 0 03)

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 10% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered	data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	æ\$	arsenic { <mark>arsenic trioxide</mark> } 033-003-00-0		6.9	mg/kg	1.32	8.199 mg/kg	0.00082 %	✓	
2	æ å	boron { diboron trioxide; boric oxide }		<0.4	mg/kg	3.22	<1.288 mg/kg	<0.000129 %		<lod< td=""></lod<>
		005-008-00-8 215-125-8 1303-86-2	Ш							
3	æ\$	cadmium { <mark>cadmium oxide</mark> }		<0.1	ma/ka	1.142	<0.114 mg/kg	<0.0000114 %		<lod< td=""></lod<>
_		048-002-00-0 215-146-2 1306-19-0								
4	4	chromium in chromium(III) compounds { • chromium(III) oxide (worst case) }		15	mg/kg	1.462	19.731 mg/kg	0.00197 %	✓	
	_	215-160-9 1308-38-9	Н							
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<0.5	mg/kg	1.923	<0.962 mg/kg	<0.0000962 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-82-0								
6	4			22	ma/ka	1.126	22.293 mg/kg	0.00223 %	1	
		029-002-00-X 215-270-7 1317-39-1	Ш						Ť	
7	4	lead { lead chromate }		14	ma/ka	1.56	19.654 mg/kg	0.00126 %	1	
		082-004-00-2 231-846-0 7758-97-6	_ 1			1.00		0.00120 70	ľ	
8	æ	mercury { mercury dichloride }		<0.1	ma/ka	1.353	<0.135 ma/ka	<0.0000135 %		<lod< td=""></lod<>
ľ		080-010-00-X 231-299-8 7487-94-7		ζ0.1	mg/kg	1.000	<0.100 mg/kg	0.0000100 /0		\LOD
9	æ	nickel { nickel chromate }		16	ma/ka	2.976	42.858 mg/kg	0.00429 %	1	
		028-035-00-7 238-766-5 14721-18-7		10	g/ng	2.070	12.000 mg/kg	0.00120 /0	•	
10	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		0.25	mg/kg	1.405	0.316 mg/kg	0.0000316 %	√	
		034-002-00-8								
11	4	zinc { zinc chromate }		48	ma/ka	2.774	119.843 mg/kg	0.012 %	1	
		024-007-00-3 236-878-9 13530-65-9							Ť	
12	0	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
		TPH		1.0	9,9			10.001 70		
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 [1634-04-4								

#			Determinand		Note	User entered	l data	Conv.	Compound	conc	Classification	Applied	Conc. Not
#		CLP index number	EC Number	CAS Number	CLPN	User entered data	Factor	Compound conc.		value	MC Ap	Used	
14		benzene 601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	_	<lod< td=""></lod<>
		toluene	200 700 7	<i> </i> 10 2	t								
15			203-625-9	108-88-3	┨	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
16	0	ethylbenzene				<0.001	mg/kg		<0.001	ma/ka	<0.0000001 %		<lod< td=""></lod<>
10		601-023-00-4	202-849-4	100-41-4		20.001	ilig/kg		20.001	IIIg/kg	<0.0000001 /8		\LOD
17			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	*	exception of comple	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
	_	pH			+								
19	0	PIT		PH	+	6.4	рН		6.4	рН	6.4 pH		
20		naphthalene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			202-049-5	91-20-3	+								
21	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	acenaphthene	201-469-6	83-32-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	Θ	fluorene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			201-695-5	86-73-7	-								
24	0	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	anthracene	204-371-1	120-12-7	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	fluoranthene		1		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-912-4	206-44-0	+								
27	0	pyrene	204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28		benzo[a]anthracene		56-55-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		chrysene	200 200 0	po 00 0	+								
29		*	205-923-4	218-01-9	┨	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30		benzo[b]fluoranther				<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
30		601-034-00-4	205-911-9	205-99-2		CU. I	mg/kg		<0.1	mg/kg	3.00001 /0		\LUD
31		benzo[k]fluoranther		207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[a]pyrene; be	nzo[def]chrysene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-032-00-3 indeno[123-cd]pyre		50-32-8	+								
33	Ů		205-893-2	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		dibenz[a,h]anthrace		53-70-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
35	0	benzo[ghi]perylene	1	1	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36	4	sulfur { sulfur }	205-883-8	191-24-2		5.1	mg/kg		4.59	mg/kg	0.000459 %	■	
		016-094-00-1 monohydric phenol	231-722-6 s	7704-34-9	-							V	
37	0	mononyuno prienti		P1186		<0.1	mg/kg		<0.1	mg/kg			<lod< td=""></lod<>
				-						Total:	0.0246 %		

Page 4 of 29 XWETX-76GQU-K7ZHJ www.hazwasteonline.com

Key

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

User supplied data

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS02-WS02-21/04/2021-0.95

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name:

WS02-WS02-21/04/2021-0.95

Sample Depth:

0.95 m

Entry:

Moisture content:

13%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 13% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered	data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	æ \$	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		2.1	mg/kg	1.32	2.412 mg/kg	0.000241 %	✓	
2	æ\$	boron { diboron trioxide; boric oxide } 005-008-00-8		<0.4	mg/kg	3.22	<1.288 mg/kg	<0.000129 %		<lod< td=""></lod<>
3	_	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		<0.1	mg/kg	1.142	<0.114 mg/kg	<0.0000114 %		<lod< td=""></lod<>
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		14	mg/kg	1.462	17.802 mg/kg	0.00178 %	√	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.5	mg/kg	1.923	<0.962 mg/kg	<0.0000962 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X		26	mg/kg	1.126	25.468 mg/kg	0.00255 %	√	
7	-	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	12	mg/kg	1.56	16.284 mg/kg	0.00104 %	✓	
8	-	mercury { mercury dichloride } 080-010-00-X		<0.1	mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
9	_	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		21	mg/kg	2.976	54.376 mg/kg	0.00544 %	√	
10	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		0.22	mg/kg	1.405	0.269 mg/kç	0.0000269 %	√	
11	~	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		50	mg/kg	2.774	120.675 mg/kg	0.0121 %	√	
12	0	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>

Page 6 of 29 XWETX-76GQU-K7ZHJ www.hazwasteonline.com

#		Determinand		Note	User entere	d data	Conv. Factor	Compound conc.	Classification	Applied	Conc. Not
"		CLP index number	er	CLPN	Oser entere	0001 011101 000 00010		Compound conc.	value	MC Ap	Used
14		benzene 601-020-00-8 200-753-7 71-43-2			<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
15		toluene 601-021-00-3 203-625-9 108-88-3			<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
16	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4			<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
17		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]			<0.002	mg/kg		<0.002 mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	≪\$	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanide ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }	,		<0.5	mg/kg	1.884	<0.942 mg/kg	<0.0000942 %		<lod< td=""></lod<>
19	0	pH PH			6.6	рН		6.6 pH	6.6 pH		
20		naphthalene 601-052-00-2 202-049-5 91-20-3			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
21	0	acenaphthylene 205-917-1 208-96-8			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	acenaphthene 201-469-6 83-32-9			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
23	0	fluorene 201-695-5 86-73-7			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
24	0	phenanthrene 201-581-5 85-01-8			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	anthracene 204-371-1 120-12-7			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	fluoranthene 205-912-4 206-44-0			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
27	0	pyrene 204-927-3 129-00-0			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
28		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
29		chrysene 205-923-4 218-01-9			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
30		benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-2			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
31		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
33	0	indeno[123-cd]pyrene			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
34		dibenz[a,h]anthracene 53-70-3			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
35	0	benzo[ghi]perylene 205-883-8 191-24-2			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
36	4	sulfur { sulfur } 231-722-6 7704-34-9			<1	mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
37	9	monohydric phenols P1186			<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
								Total	0.0248 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)
 Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 8 of 29 XWETX-76GQU-K7ZHJ www.hazwasteonline.com

Classification of sample: WS03-WS03-21/04/2021-0.2

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name: LoW Code: WS03-WS03-21/04/2021-0.2 Chapter: Sample Depth:

0.2 m Entry: Moisture content:

12%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 12% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered	l data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	-	arsenic { <mark>arsenic trioxide</mark> } 033-003-00-0		9.1	mg/kg	1.32	10.573 mg/k	g 0.00106 %	√	
	+		+						+	
2	-	005-008-00-8 215-125-8 1303-86-2	_	<0.4	mg/kg	3.22	<1.288 mg/k	g <0.000129 %		<lod< td=""></lod<>
	+		+							
3	-	048-002-00-0 215-146-2 1306-19-0	-	<0.1	mg/kg	1.142	<0.114 mg/k	g <0.0000114 %		<lod< td=""></lod<>
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		16	mg/kg	1.462	20.579 mg/k	g 0.00206 %	√	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<0.5	mg/kg	1.923	<0.962 mg/k	g <0.0000962 %		<lod< td=""></lod<>
	+	024-001-00-0 215-607-8 1333-82-0								
6	-	copper { dicopper oxide; copper (I) oxide }	_	16	mg/kg	1.126	15.853 mg/k	0.00159 %	1	
_	+-	029-002-00-X 215-270-7 1317-39-1					-		-	
7	4	lead {	_ 1	14	mg/kg	1.56	19.217 mg/k	0.00123 %	✓	
	+-	082-004-00-2 231-846-0 7758-97-6	+						+	
8	-	mercury { mercury dichloride } 080-010-00-X 231-299-8 17487-94-7	_	<0.1	mg/kg	1.353	<0.135 mg/k	g <0.0000135 %		<lod< td=""></lod<>
	_	080-010-00-X 231-299-8 7487-94-7 nickel { nickel chromate }	+						-	
9	_	028-035-00-7 238-766-5 14721-18-7	-	18	mg/kg	2.976	47.144 mg/k	g 0.00471 %	✓	
10	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		0.39	mg/kg	1.405	0.482 mg/k	g 0.0000482 %	√	
	+	034-002-00-8	+						+-	
11	-	zinc { zinc chromate }	_	43	mg/kg	2.774	104.974 mg/k	g 0.0105 %	✓	
	+	024-007-00-3	+						+	
12	0	TPH (C6 to C40) petroleum group	_	<10	mg/kg		<10 mg/k	g <0.001 %		<lod< td=""></lod<>
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<0.001	mg/kg		<0.001 mg/k	g <0.0000001 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4								

HazWasteOnline[™] Report created by Laura Jones on 25 May 2021

#			Determinand		CLP Note	User entered	l data	Conv.	Compound co	onc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	J.							MC/	
14		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
			200-753-7	71-43-2									
15		toluene 601-021-00-3	202 625 0	400 00 2	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		ethylbenzene	203-625-9	108-88-3									
16	0		202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
17		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	cyanides { salts of exception of completerricyanides and managements of the completer of the completer of the completer of the complete of the	ex cyanides such as nercuric oxycyanide	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
	0	pH		l .									
19	_			PH	-	7.8	рН		7.8	pН	7.8 pH		
20		naphthalene		1		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3		40.1				mg/ng			
21	Θ	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	Θ	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	Θ	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	fluoranthene	205-912-4	206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	pyrene	203-912-4	200-44-0									
27	9	I	204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28		benzo[a]anthracene		56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
29		chrysene	205-923-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30		benzo[b]fluoranther		205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31		benzo[k]fluoranther		207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[a]pyrene; be		1		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33	0	indeno[123-cd]pyre	ne	50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		dibenz[a,h]anthrace	205-893-2 ene	193-39-5		<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
U -			200-181-8	53-70-3	L	V. 1	mg/kg		VO. 1	mg/kg	3.00001 70		\LUD
35	0		205-883-8	191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36	4	sulfur { <mark>sulfur</mark> } 016-094-00-1	231-722-6	7704-34-9		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
37	0	monohydric phenol	s	P1186		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
										Total:	0.0228 %		

Page 10 of 29 XWETX-76GQU-K7ZHJ www.hazwasteonline.com

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS04-WS04-21/04/2021-0.55

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

WS04-WS04-21/04/2021-0.55

Sample Depth:

0.55 m

Entry:

Moisture content:

13%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 13% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound cond	Э.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic tr		1327-53-3		5.9	mg/kg	1.32	6.777 m	g/kg	0.000678 %	✓	
2	4	boron { diboron tric	oxide; boric oxide }	1303-86-2		<0.4	mg/kg	3.22	<1.288 m	g/kg	<0.000129 %		<lod< td=""></lod<>
3	4		<mark>m oxide</mark> } 215-146-2	1306-19-0		<0.1	mg/kg	1.142	<0.114 m	g/kg	<0.0000114 %		<lod< td=""></lod<>
4	æ\$	oxide (worst case)	nium(III) compounds } 215-160-9	{ • chromium(III)		12	mg/kg	1.462	15.259 m	g/kg	0.00153 %	✓	
5	æ	oxide }	nium(VI) compounds	1333-82-0		<0.5	mg/kg	1.923	<0.962 m	g/kg	<0.0000962 %		<lod< td=""></lod<>
6	4		oxide; copper (I) oxide 215-270-7	de }		15	mg/kg	1.126	14.693 m	g/kg	0.00147 %	✓	
7	æ\$		<mark>te</mark> } 231-846-0	7758-97-6	1	8.2	mg/kg	1.56	11.128 m	g/kg	0.000713 %	✓	
8	4			7487-94-7		<0.1	mg/kg	1.353	<0.135 m	g/kg	<0.0000135 %		<lod< td=""></lod<>
9	4	nickel { nickel chroi 028-035-00-7	<mark>mate</mark> } 238-766-5	14721-18-7		13	mg/kg	2.976	33.662 m	g/kg	0.00337 %	✓	
10	4		m compounds with t lenide and those sp			0.24	mg/kg	1.405	0.293 m	g/kg	0.0000293 %	✓	
11	4	zinc { zinc chromat	<mark>e</mark> } 236-878-9	13530-65-9		34	mg/kg	2.774	82.059 m	g/kg	0.00821 %	✓	
12	0	TPH (C6 to C40) p	etroleum group	TPH		<10	mg/kg		<10 m	g/kg	<0.001 %		<lod< td=""></lod<>
13		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X		1634-04-4		<0.001	mg/kg		<0.001 m	g/kg	<0.0000001 %		<lod< td=""></lod<>

Page 12 of 29 XWETX-76GQU-K7ZHJ www.hazwasteonline.com

_	_											_	
#			Determinand		Note	User entered	data	Conv. Factor	Compound of	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							MC	
14		benzene	000 750 7			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
-		'	200-753-7	71-43-2	L								
15		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		1	203-625-9	108-88-3									
16	0	ethylbenzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4						J J			
17			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	cyanides { salts exception of completerricyanides and magnetified elsewhere 006-007-00-5	ex cyanides such as nercuric oxycyanide	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
1.0	0	pН	1										
19	_			PH		6.8	рН		6.8	рН	6.8 pH		
		naphthalene		,									
20		•	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	acenaphthylene											
21			205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		acenaphthene											
22	9	·	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	_	fluorene	201 400 0	00 02 0									
23	ω		201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
-		phenanthrene	201 000 0	00 10 1									
24	9	•	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	_	anthracene	201-301-3	03-01-0	H								
25	0		204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
-		fluoranthene	204-371-1	120-12-7									
26	0		005 040 4	000 44 0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		1	205-912-4	206-44-0									
27	0	pyrene	004.007.0	400.00.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			204-927-3	129-00-0									
28		benzo[a]anthracene		F0 FF 0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			200-280-6	56-55-3									
29		chrysene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		1	205-923-4	218-01-9									
30		benzo[b]fluoranther				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-911-9	205-99-2		ļ							
31		benzo[k]fluoranther				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-916-6	207-08-9									
32		benzo[a]pyrene; be				<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			200-028-5	50-32-8			39			59			
33	0	indeno[123-cd]pyre	ene			<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			205-893-2	193-39-5		.3	9			9			
34		dibenz[a,h]anthrace	ene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
Ĺ		601-041-00-2	200-181-8	53-70-3		.3	9			9			
35	0	benzo[ghi]perylene				<0.1	mg/kg	7	<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			205-883-8	191-24-2	L	\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	mg/kg			mg/kg			
36	æ	sulfur { sulfur }				_1	ma/ka			ma/ka	~0.0001 °/	Г	<lod< td=""></lod<>
30		016-094-00-1	231-722-6	7704-34-9		<1	mg/kg		<1	mg/kg	<0.0001 %		<lud< td=""></lud<>
07	0	monohydric phenol	s	*		.0.4	no e: /1 -		.0.4	m c://-	-0.00004.0/		.1.05
37				P1186		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
				*						Total:	0.0176 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)
 Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 14 of 29 XWETX-76GQU-K7ZHJ www.hazwasteonline.com

Classification of sample: WS05-WS05-21/04/2021-0.3

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name: LoW Code: WS05-WS05-21/04/2021-0.3 Chapter: Sample Depth: Entry:

0.3 m Entry: Moisture content:

17%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 17% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered of	data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		8.6	mg/kg	1.32	9.424 mg/kg	0.000942 %	✓	
2	4	boron { diboron trioxide; boric oxide }		<0.4	mg/kg	3.22	<1.288 mg/kg	<0.000129 %		<lod< td=""></lod<>
3	4			0.1	mg/kg	1.142	0.0948 mg/kg	0.00000948 %	√	
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		16 1	mg/kg	1.462	19.409 mg/kg	0.00194 %	√	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.5	mg/kg	1.923	<0.962 mg/kg	<0.0000962 %		<lod< td=""></lod<>
6	æ å			13 1	mg/kg	1.126	12.148 mg/kg	0.00121 %	√	
7	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	_ 1	18 1	mg/kg	1.56	23.304 mg/kg	0.00149 %	✓	
8	4	mercury { mercury dichloride } 080-010-00-X		<0.1	mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
9	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		14 1	mg/kg	2.976	34.584 mg/kg	0.00346 %	✓	
10	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		0.91	mg/kg	1.405	1.061 mg/kg	0.000106 %	✓	
11	4		-	42 1	mg/kg	2.774	96.707 mg/kg	0.00967 %	√	
12	0	TPH (C6 to C40) petroleum group		<10 ı	mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
13	1	tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001 ı	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>

			Determinand		ate			Conv.			Classification	Applied	Conc. Not
#		CLP index number	EC Number	CAS Number	CLP Note	User entered	data	Factor	Compound of	conc.	value	MC App	Used
14		benzene 601-020-00-8	200-753-7	71-43-2	<u>U</u>	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	≥	<lod< td=""></lod<>
		toluene	200-755-7	/ 1-43-2	+							+	
15			203-625-9	108-88-3	┨	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
40	0	ethylbenzene		1,000	T	0.004			0.004	-	0.000001.0/		1.00
16		601-023-00-4	202-849-4	100-41-4	1	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
17			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	exception of comple	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		pH			+								
19	0	F. '		PH	1	7.3	рН		7.3	рН	7.3 pH		
20		naphthalene			T	.0.1			.0.1		-0.00001.0/		-1.00
20		601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	•	acenaphthene	201-469-6	83-32-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	0	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	Θ	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	fluoranthene	205-912-4	206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27	0	pyrene	204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28		benzo[a]anthracen	9	56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
29		chrysene 601-048-00-0	205-923-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30		benzo[b]fluoranther		205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31		benzo[k]fluoranther	ne	207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[a]pyrene; be	nzo[def]chrysene	50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33	0	indeno[123-cd]pyre		193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		dibenz[a,h]anthrace 601-041-00-2		53-70-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
35	0	benzo[ghi]perylene		191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36	4	sulfur { <mark>sulfur</mark> } 016-094-00-1	231-722-6	7704-34-9		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
37	0	monohydric phenol		P1186		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
										Total:	0.0204 %		

Page 16 of 29 XWETX-76GQU-K7ZHJ www.hazwasteonline.com

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS06-WS06-21/04/2021-0.5

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name:

WS06-WS06-21/04/2021-0.5

Sample Depth:

0.5 m

Entry:

Moisture content:

19%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 19% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entere	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }		9.6	mg/kg	1.32	10.267 mg/kg	0.00103 %	√	
2	4	boron { diboron trioxide; boric oxide } 005-008-00-8		<0.4	mg/kg	3.22	<1.288 mg/kg	<0.000129 %		<lod< td=""></lod<>
3	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		<0.1	mg/kg	1.142	<0.114 mg/kg	<0.0000114 %		<lod< td=""></lod<>
4	4	chromium in chromium(III) compounds { chromium(I oxide (worst case) }	I)	19	mg/kg	1.462	22.493 mg/kg	0.00225 %	✓	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.5	mg/kg	1.923	<0.962 mg/kg	<0.0000962 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X		9.6	mg/kg	1.126	8.755 mg/kg	0.000875 %	√	
7	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	15	mg/kg	1.56	18.952 mg/kg	0.00122 %	✓	
8	_	mercury { mercury dichloride } 080-010-00-X		<0.1	mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
9	_	nickel { nickel chromate } 028-035-00-7		13	mg/kg	2.976	31.34 mg/kg	0.00313 %	√	
10	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewher in this Annex }	•	1.2	mg/kg	1.405	1.366 mg/kg	0.000137 %	✓	
11		zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		36	mg/kg	2.774	80.894 mg/kg	0.00809 %	√	
12	0	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>

Page 18 of 29 XWETX-76GQU-K7ZHJ www.hazwasteonline.com

_	_	·										_	
#			Determinand		Note	User entered	data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							MC	
14		benzene	000 750 7			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
-			200-753-7	71-43-2	L								
15		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
			203-625-9	108-88-3									
16	0	ethylbenzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
17			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	cyanides { salts exception of completerricyanides and magnetised elsewhere 006-007-00-5	ex cyanides such as nercuric oxycyanide	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
40	0	pН	1			0.0			0.0		0.0 11		
19	_			PH		6.9	рН		6.9	рН	6.9 pH		
		naphthalene											
20		•	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	acenaphthylene											
21	Ĭ		205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	acenaphthene		1									
22		·	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	_	fluorene	201 400 0	00 02 0									
23			201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
-		phenanthrene	201 000 0	00 10 1									
24	9	·	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	_	anthracene	201-301-3	03-01-0	H								
25	0		204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
-		fluoranthene	204-371-1	120-12-1									
26	0		005 040 4	206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
_			205-912-4	200-44-0									
27	0	pyrene	004.007.0	400.00.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			204-927-3	129-00-0									
28		benzo[a]anthracene		F0 FF 0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			200-280-6	56-55-3									
29		chrysene	loo= 000 4	0.40.04.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		· · · · · · · · · · · · · · · · · · ·	205-923-4	218-01-9									
30		benzo[b]fluoranther				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-911-9	205-99-2		ļ							
31		benzo[k]fluoranther				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-916-6	207-08-9									
32		benzo[a]pyrene; be				<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
		601-032-00-3	200-028-5	50-32-8									
33	0	indeno[123-cd]pyre	ene			<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			205-893-2	193-39-5			əə			.59			
34		dibenz[a,h]anthrace	ene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
L			200-181-8	53-70-3			Jg			59			
35	0	benzo[ghi]perylene				<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
	L		205-883-8	191-24-2	L	30.1	9/119		30.1	9,119	.0.0001 70	L	
36	ď	sulfur { sulfur }				<1	mg/kg		<1	ma/ka	<0.0001 %		<lod< td=""></lod<>
		016-094-00-1	231-722-6	7704-34-9	L		mg/kg			mg/kg	10.0001 /0		
37	0	monohydric phenol	s			-0.1	ma/ka		-0.1	ma/ka	<0.00001 °/		<lod< td=""></lod<>
31				P1186		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud< td=""></lud<>
		,		•						Total:	0.0183 %		
												-	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)
 Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 20 of 29 XWETX-76GQU-K7ZHJ www.hazwasteonline.com

Classification of sample: WS06-WS06-21/04/2021-0.95

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: WS06-WS06-21/04/2021-0.95 Chapter: Sample Depth: Entry:

0.95 m

Moisture content:

10%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 10% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	-	arsenic { <mark>arsenic trioxide</mark> } 033-003-00-0		5.9	mg/kg	1.32	7.011 mg/kg	0.000701 %	✓	
	+									
2	-	005-008-00-8 215-125-8 1303-86-2	_	<0.4	mg/kg	3.22	<1.288 mg/kg	<0.000129 %		<lod< td=""></lod<>
	+		+				 			
3	_	048-002-00-0 215-146-2 1306-19-0	-	<0.1	mg/kg	1.142	<0.114 mg/kg	<0.0000114 %		<lod< td=""></lod<>
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		13	mg/kg	1.462	17.1 mg/k	0.00171 %	✓	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<0.5	mg/kg	1.923	<0.962 mg/kg	g <0.0000962 %		<lod< td=""></lod<>
	-	024-001-00-0 215-607-8 1333-82-0								
6	_	copper { dicopper oxide; copper (I) oxide }		12	mg/kg	1.126	12.16 mg/kg	0.00122 %	✓	
	+-	029-002-00-X 215-270-7 1317-39-1	-						-	
7	4	lead { lead chromate } 082-004-00-2	_ 1	8.7	mg/kg	1.56	12.213 mg/kg	0.000783 %	✓	
	+-	mercury { mercury dichloride }	+							
8	_	080-010-00-X 231-299-8 7487-94-7	-	<0.1	mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
		nickel { nickel chromate }	+							
9	_	028-035-00-7	_	20	mg/kg	2.976	53.573 mg/k	0.00536 %	✓	
10		selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		0.27	mg/kg	1.405	0.341 mg/k	0.0000341 %	√	
	+	034-002-00-8							_	
11	_	zinc { zinc chromate }		57	mg/kg	2.774	142.314 mg/kg	0.0142 %	1	
	-	024-007-00-3 236-878-9 13530-65-9							\vdash	
12	0	TPH (C6 to C40) petroleum group	_	<10	mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
	-	TPH	-							
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4								

	_	001130	iiiiiig		Т							1	
#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
14		benzene	000 750 7	74.40.0		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	2	<lod< td=""></lod<>
		1	200-753-7	71-43-2	\vdash							-	
15		toluene 601-021-00-3	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		ethylbenzene	200 020 0	100 00 0									
16	Ĭ		202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
17			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	exception of completerricyanides and management specified elsewhere	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
	_	006-007-00-5 pH											
19	9	Pri		PH	-	6.3	рН		6.3	рН	6.3 pH		
20		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	acenaphthylene	_0_0.00	p. 20 0		0.4	,,		0.4	,	0.00004.0/		1.00
21		. ,	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	Θ	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	0	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	fluoranthene	205-912-4	206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27	0	pyrene	204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28		benzo[a]anthracen		56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
29		chrysene	205-923-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30		benzo[b]fluoranther		205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31		benzo[k]fluoranther		207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[a]pyrene; be		50-32-8	T	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33	0	indeno[123-cd]pyre		193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		dibenz[a,h]anthrace		53-70-3	T	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
35	0	benzo[ghi]perylene		191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36	ď	sulfur { sulfur }	231-722-6	7704-34-9		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
37	0	monohydric phenol		P1186		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		1		1		1				Total:	0.0256 %		

Page 22 of 29 XWETX-76GQU-K7ZHJ www.hazwasteonline.com

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS07-WS07-21/04/2021-0.6

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

WS07-WS07-21/04/2021-0.6
Chapter:
Sample Depth:

0.6 m
Entry:
Moisture content:
12%
(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 12% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered	l data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0		5	mg/kg	1.32	5.809 mg/kg	0.000581 %	✓	
2	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		<0.4	mg/kg	3.22	<1.288 mg/kg	<0.000129 %		<lod< td=""></lod<>
3	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		<0.1	mg/kg	1.142	<0.114 mg/kg	<0.0000114 %		<lod< td=""></lod<>
4	4	chromium in chromium(III) compounds {		12	mg/kg	1.462	15.434 mg/kg	0.00154 %	√	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.5	mg/kg	1.923	<0.962 mg/kg	<0.0000962 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X		18	mg/kg	1.126	17.834 mg/kg	0.00178 %	✓	
7	4	lead { lead chromate } 082-004-00-2	_ 1	11	mg/kg	1.56	15.099 mg/kg	0.000968 %	√	
8	_	mercury { mercury dichloride } 080-010-00-X		<0.1	mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
9	_	nickel { nickel chromate } 028-035-00-7		23	mg/kg	2.976	60.24 mg/kg	0.00602 %	√	
10	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		0.27	mg/kg	1.405	0.334 mg/kg	0.0000334 %	✓	
11		zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		61	mg/kg	2.774	148.916 mg/kg	0.0149 %	√	
12	0	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 [1634-04-4]		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>

Page 24 of 29 XWETX-76GQU-K7ZHJ www.hazwasteonline.com

Part	$\overline{}$	_	Γ		-	_			1				_	
CPS Marker M	#					Note	User entered	l data		Compound of	conc.		Applied	Conc. Not Used
Marcane			CLP index number	EC Number	CAS Number	딩							MC	
Marchester Mar	4.4		benzene				-0.004			-0.004	20 cm /1 cm	-0.0000001.0/		-1.00
10	14		601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lud< td=""></lud<>
Second Company Compa	45		toluene				0.004			0.004	//	0.0000004.0/		1.00
10	15		601-021-00-3	203-625-9	108-88-3	1	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
10		0	ethylbenzene					,		0.004				
Welves	16		•	202-849-4	100-41-4	1	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
Secretion of complex cyanides such as ferroryanides, experience and mercinic oxygonide and those specified elsewhere in this Annex } Secretion S	17		601-022-00-9	203-396-5 [2] 203-576-3 [3]	106-42-3 [2] 108-38-3 [3]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
PH	18	4	exception of compl ferricyanides and n specified elsewhere	ex cyanides such as nercuric oxycyanide	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
PH	10	0	pН				5.0	ъЦ.		F 0	ъЦ	5 0 pH		
Solido S	19				PH	1	5.9	рп		5.9	ρΠ	ა.ყ p⊓		
Self-052-00-2 202-049-5 91-20-3 3-0-	20		naphthalene				-0.1	ma/ka		-0.1	ma/ka	<0.00001.9/		~I OD
205-917-1 208-96-8 201-1 mg/kg 201-1 201-1 mg/kg 20		601-052-00-2	202-049-5	91-20-3	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud< td=""></lud<>	
20	24	0	acenaphthylene				-0.4			-0.4		-0.00004.0/		-1.00
Part				205-917-1	208-96-8	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud< td=""></lud<>
23 Part Pa	22	0	acenaphthene		,		-0.4			-0.4		-0.00004.0/		-1.00
23	22			201-469-6	83-32-9	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud< td=""></lud<>
24 phenanthrene	22	0	fluorene				-0.1	ma/ka		-0.1	ma/ka	-0.00001.9/		4LOD
201-581-5 85-01-8	23			201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud< td=""></lud<>
201-581-5 85-01-8 3-0.1 mg/kg 3-0.1 mg/kg 3-0.00001 3-0.000001 3-0.00000000000000000000000000000000000	24	0	phenanthrene				-0.1	ma/ka		-0.1	ma/ka	-0.00001.9/		4LOD
25	24			201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud< td=""></lud<>
Post-off-light continue	25	0	anthracene				-0.4			-0.4	20 cm /1 cm	-0.00004.0/		-1.00
205-912-4 206-44-0	25			204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud< td=""></lud<>
Pyrene 206-912-4 206-44-0 206-44-0 206-44-0 206-44-0 206-44-0 206-44-0 206-44-0 206-44-0 206-83-2 206-83-8 206-83-8 206-83-8 206-83-8 206-84-0 206-83-8	26	0	fluoranthene				-0.1	ma/ka		-0.1	ma/ka	-0.00001.9/		4LOD
204-927-3	20			205-912-4	206-44-0	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud< td=""></lud<>
204-927-3 129-00-0	27	0	pyrene				-0.1	ma/ka		-0.1	ma/ka	-0.00001.9/		4LOD
28	21			204-927-3	129-00-0	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud< td=""></lud<>
S01-033-00-9 200-280-6 56-55-3	20		benzo[a]anthracen	e			-0.1	ma/ka		-0.1	ma/ka	~0.00001 %		-I OD
29	20		601-033-00-9	200-280-6	56-55-3	1	VO.1	my/ky		ζ0.1	ilig/kg	<0.00001 /6		\LUD
Solidar Soli	20		chrysene			Ī	-0.1	ma/ka		-0.1	ma/ka	<0.00001.9/		-I 0D
Solution Solution	29		601-048-00-0	205-923-4	218-01-9		CU.1	mg/kg		CU.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
Solid Soli	30		benzo[b]fluoranthe	ne			-0.1	ma/ka		-0.1	ma/ka	<0.00001 %		~I OD
Seminorm Seminorm	30		601-034-00-4	205-911-9	205-99-2		CU.1	mg/kg		CU.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
Seminorm Seminorm	31		benzo[k]fluoranthe	ne			<0.1	ma/ka		-0.1	ma/ka	<0.00001 %		<1.0D
Section Sect	51	L	601-036-00-5	205-916-6	207-08-9		VO. 1	y/kg		V 0.1	g/kg			
33 indeno[123-cd]pyrene	33		benzo[a]pyrene; be	enzo[def]chrysene			-0.1	ma/ka		-0.1	ma/ka	<0.00001 %		<1.0D
33 a indeno[123-cd]pyrene	عد	L	601-032-00-3	200-028-5	50-32-8		CU.1	mg/kg		CU.1	mg/kg	<0.00001 %		\LUD
34 dibenz[a,h]anthracene	33	0	indeno[123-cd]pyre	ene			<0.1	ma/ka		-0.1	ma/ka	<0.00001 %		<1 OD
34				205-893-2	193-39-5	L	VO.1	y/ky		VO.1	mg/kg	3.00001 /0		\LUD
Solution Solution	34					_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36 Sulfur { sulfur }				1	53-70-3	+								
205-883-8 191-24-2	35	0					<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36 016-094-00-1 231-722-6 [7704-34-9] 37 0 monohydric phenols			ł	ZU5-883-8	191-24-2	-								
37 monohydric phenols	36	4		loo 4 = 0 = -			<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
20.1 mg/kg 20.00001 % 2000 20				1	//04-34-9	-								
Total: 0.0274 %	37	0	monohydric pheno	ls	P1186		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
											Total:	0.0274 %	П	

Kov	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 26 of 29 XWETX-76GQU-K7ZHJ www.hazwasteonline.com

Appendix A: Classifier defined and non CLP determinands

chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

 $Hazard\ Statements:\ Acute\ Tox.\ 4\ H332\ ,\ Acute\ Tox.\ 4\ H302\ ,\ Eye\ Irrit.\ 2\ H319\ ,\ STOT\ SE\ 3\ H335\ ,\ Skin\ Irrit.\ 2\ H315\ ,\ Resp.\ Sens.\ 1$

H334, Skin Sens. 1 H317, Repr. 1B H360FD, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3 H226 , Asp. Tox. 1 H304 , STOT RE 2 H373 , Muta. 1B H340 , Carc. 1B H350 , Repr. 2 H361d ,

Aquatic Chronic 2 H411

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4

Description/Comments:

Data source: Commission Regulation (EU) No 605/2014 - 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP6)

Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide

Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP1)

Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s):

14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4 H302, Acute Tox. 1 H330, Acute Tox. 1 H310, Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Aquatic Acute 1 H400, Aquatic Chronic 1 H410, Aquatic

Chronic 2 H411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4 H302 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Carc. 2 H351 , Skin Sens. 1 H317 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410 , Skin Irrit. 2 H315

www.hazwasteonline.com XWETX-76GQU-K7ZHJ Page 27 of 29

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Skin Sens. 1 H317, Aquatic Acute 1 H400, Aquatic

Chronic 1 H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4 H302, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2 H315, Eye Irrit. 2 H319, STOT SE 3 H335, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

monohydric phenols (CAS Number: P1186)

Description/Comments: Combined hazards statements from harmonised entries in CLP for phenol, cresols and xylenols (604-001-00-2,

604-004-00-9, 604-006-00-X) Data source: CLP combined data Data source date: 26 Mar 2019

Hazard Statements: Acute Tox. 3 H301 , Acute Tox. 3 H311 , Acute Tox. 3 H331 , Skin Corr. 1B H314 , Skin Corr. 1B H314 >= 3 %, Skin

Irrit. 2 H315 1 £ conc. < 3 %, Eye Irrit. 2 H319 1 £ conc. < 3 %, Muta. 2 H341 , STOT RE 2 H373 , Aquatic Chronic 2 H411

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

boron {diboron trioxide; boric oxide}

Reasonable case CLP species based on hazard statements/ molecular weight, physical form and low solubility. Industrial sources include: fluxing agent for glass/enamels; additive for fibre optics, borosilicate glass (edit as required)

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. (edit as required) Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history (edit as required)

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass (edit as required)

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments (edit as required)

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

Page 28 of 29 XWETX-76GQU-K7ZHJ www.hazwasteonline.com

lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil. (edit as required)

zinc {zinc chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case as complex cyanides and those specified elsewhere in the annex are not likely to be present in this soil: [Note conversion factor based on a worst case compound: sodium cyanide] (edit as required)

sulfur (sulfur)

Elemental sulfur most likely to be worst case scenario hazardous

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018

HazWasteOnline Classification Engine Version: 2021.138.4779.9121 (18 May 2021)

HazWasteOnline Database: 2021.138.4779.9121 (18 May 2021)

This classification utilises the following guidance and legislation:

WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2019 - UK: 2019 No. 720 of 27th March 2019

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

POPs Regulation 2019 - Regulation (EU) 2019/1021 of 20 June 2019

www.hazwasteonline.com XWETX-76GQU-K7ZHJ Page 29 of 29

CIVIL | STRUCTURAL | GEOTECHNICAL & ENVIRONMENTAL | TRAFFIC AND TRANSPORT